点击右上角微信好友

朋友圈

请使用浏览器分享功能进行分享

正在阅读:花中为何“结出”叶片?认识樱花家族的奇特成员
首页> 光明科普云> 农业农村频道> 三农看点 > 正文

花中为何“结出”叶片?认识樱花家族的奇特成员

来源:光明网2024-08-19 10:00

  众所周知,花朵是孕育果实的器官,它们由层层叠叠的花萼(花瓣外一圈起保护作用的构造,多为绿色)、花瓣包围着花蕊组成;花蕊分为雄蕊和雌蕊,大部分花都是多枚雄蕊围绕着中间的雌蕊。细小的雌蕊之所以能享受一重又一重的“集体护卫”,是因为它是植物繁衍后代的果实的前身(内含种子)。

  雌蕊从上到下由柱头、花柱、子房三部分组成,雌蕊底部是膨大的,当仅有一个花柱或花柱合生时酷似酒瓶。不过有一种树木名为“日本晚樱”(Prunus serrulata var.lannesiana)的树木,花冠最中心却是一片绿叶,花儿为什么会“结出”叶片呢?

  日本晚樱有什么特点?

  樱花树是蔷薇科樱属几种乔木的统称。有先花后叶的山樱,花为深桃红色;还有花叶同放的东京樱花,花为粉色。这两种花色单一,花期很短,1周左右就凋谢,且多为单瓣。日本晚樱是樱花树家族的重要成员,不仅花期长,且花色丰富,有纯白、粉白、深粉、淡黄、浅绿,花瓣有单瓣、半重瓣、重瓣,盛开时花团锦簇,如云似霞。

花中为何“结出”叶片?认识樱花家族的奇特成员

陈俊通 摄

花中为何“结出”叶片?认识樱花家族的奇特成员

陈俊通 摄

  日本晚樱是山樱的变种,树高一般在3米-8米,属于乔木中较为低矮的树种。它的叶片卵状椭圆形,先端渐尖,如同拖着一条长长的小尾巴;叶片边缘镶嵌了一圈尖牙般的重锯齿,齿端伸出纤细整齐的长芒,使整个叶片显得精致细腻。叶柄顶部有1-3个圆形腺体,这是蔷薇科樱属大部分树木叶片的共同特征。

花中为何“结出”叶片?认识樱花家族的奇特成员

“拖”着“小尾巴”的叶片

  日本晚樱的花期是每年3-5月,它花大色艳,气味芳香。除了赏花,春季新生的幼叶也各具情态,从黄绿、红褐到紫红色,斑斓多彩。因而是樱花中的优良树种,在日本有悠久的栽培历史,园艺品种极多。现代园艺家还繁育出了能四季开花的“四季樱”。

花中为何“结出”叶片?认识樱花家族的奇特成员

日本晚樱的彩叶品种(陈俊通 摄)

  日本晚樱起源于何处?

  包括日本晚樱在内的樱花树据说起源于我国。日本权威著作《樱大鉴》记载,樱花原产于喜马拉雅山脉,被人工栽种后,逐步传入我国长江流域、西南部等多个地区。秦汉时期,宫廷皇族就已种植樱花,至今已有2000多年的栽培历史。至盛唐时,无论宫苑深廊还是民间田野,均可目睹樱花绚烂绽放之。

  “亦知官舍非吾宅,且掘山樱满院栽,上佐近来多五考,少应四度见花开。”“小园新种红樱树,闲绕花枝便当游。”古诗中描绘了诗人从山野掘回野生的山樱花,将其植于庭院中观赏。

  当年万国来朝,日本深慕中华文化之璀璨,樱花随着建筑、服饰等一并被日本朝拜者带回。因此,日本栽种樱花的历史比中国要晚一千余年。

  花朵为什么会“结出”叶片?

  作为植物生殖器官的花朵,由外向内由花萼、花瓣、雄蕊、雌蕊组成,这四部分其实都是由叶演变而成的,或者说是叶片的变态,因为它们虽然形态上与绿叶相差较大,但都像叶片一样内含稍分枝的维管组织(即叶脉)与丰富的薄壁细胞,原始的植物如玉兰,其花被片(分不清花萼、花瓣的花冠结构)上可明显看出脉纹;只是除了花萼之外,其他三部分(花瓣、雄蕊、雌蕊)的薄壁细胞里缺少叶绿体。因此有植物学家提出花朵其实是一种适应繁殖的变态短枝。

  雌蕊由一个或多个心皮构成,每个心皮都是一个变态的叶片。心皮两边折卷接合起来,就形成了瓶状的结构,进而发育成子房。

  既然花朵的结构就是变态的叶片的组合,说明日本晚樱花朵中心的绿叶其实是一种退化或者返祖现象。看下图,左边的绿色雌蕊就像一片绿叶正在对折过来靠拢。

花中为何“结出”叶片?认识樱花家族的奇特成员

  日本晚樱的应用

  日本晚樱喜光,喜欢湿润肥沃而排水良好的微酸性土壤,中性土也适应,但不耐盐碱。其耐寒性较强,因此极受我国北方城市绿化的青睐。

  日本晚樱树姿洒脱,花枝繁茂,可以大片栽植形成“花海”景观;也有三五成丛点缀于绿地的锦团,形成“万绿丛中一点红”之画意。此外,还可作小路行道树、花篱或盆景。一般而言,日本晚樱以群植为佳,并配植常绿树作衬托。

  除了观赏价值外,樱花还是护肤品的重要原料之一,其花蕾还具有“镇咳祛风”的药用价值。

  作者:王珏 北京林业大学副教授

  策划:谢芸

  审校:王诗涵(实习)

 

[ 责编:武玥彤 ]
阅读剩余全文(

相关阅读

您此时的心情

光明云投
新闻表情排行 /
  • 开心
     
    0
  • 难过
     
    0
  • 点赞
     
    0
  • 飘过
     
    0

视觉焦点

  • 游西夏陵 开启新体验

  • 江苏扬州至镇江直流输电二期工程建成投运

独家策划

推荐阅读
近日,一个名为Moltbook的社交平台突然走红。与普通网络平台不同的是,Moltbook上的用户都是AI智能体。
2026-02-14 09:21
全球规模最大的200万吨/年柴油吸附分离装置目前在中国石油广西石化稳定运行。
2026-02-14 09:16
大连理工大学赵珺教授带领师生团队正抓紧时间,为实现可重复使用运载火箭关键部件的“复用检测”技术突破全力冲刺。
2026-02-14 09:12
一场刷新人类对宇宙极端物理过程认知的高能事件,被中国科学卫星清晰捕获并成功解读。
2026-02-14 09:11
近日,中国计量科学研究院研制的锶原子光晶格钟NIM-Sr1正式获准校准国际标准时间,实现了我国光钟参与校准国际标准时间“零”的突破。
2026-02-14 09:10
装上智能仿生手,截肢患者可以轻松拿起水杯喝水;高位截瘫患者用意念移动电脑光标,操控轮椅,指挥机器狗取外卖……
2026-02-13 09:50
凌晨2时,南昌西动车组运用一所检修库内灯光如昼。“接触网已断电,安全措施准备完毕,申请登顶!”确认许可后,国铁南昌局电务段南昌西车载设备车间工长曹准与工友一前一后登上动车组车顶,对北斗天线进行全面“体检”。
2026-02-13 09:45
近日,广西涠洲岛海域发生渔船撞击布氏鲸事件,鲸鱼受伤的画面令人揪心。虽然撞鲸的并非观鲸船,但这起事件也给正处于旺季的观鲸游敲响警钟——负责任地观鲸,有边界地亲近,人与自然和谐共生图景才能真正长久。
2026-02-13 09:43
核光钟通过真空紫外激光诱导原子核跃迁,具备更高精度与强抗干扰能力,且可实现便携化应用。但研制核光钟的道路上的一个核心瓶颈,是无法研制出能激发核跃迁的连续波激光光源。
2026-02-13 09:42
2021年,王勤团队开始研发低成本、适用于牧场环境的马匹体形自动测定设备。王勤团队搜集了全球90个马群体、近40个品种的基因组信息,构建了包含2000多个个体的参考面板——这是目前全球规模最大的马基因组参考数据库。
2026-02-13 09:36
一纸锦旗山水间,杏林春暖绿意长。
2026-02-12 11:01
金星与地球大小相近,同样诞生于太阳系内侧,却有着截然不同的命运。
2026-02-12 09:41
科技部十司相关负责同志解读《调查处理规定》。
2026-02-12 09:38
《细胞》封面:猕猴屏状核细胞分类与全脑联接图谱。在当前脑图谱大科学计划研究目标迈进绘制非人灵长类介观脑图谱的关键阶段,中国科学家仍在进一步集聚全球力量,持续扩大“朋友圈”。
2026-02-12 09:25
据悉,在战略上,植物星球计划还将整体提升全球生物多样性保护和实现碳中和的生态能力,构建植物科学领域全球大科学命题国际合作的新格局。
2026-02-12 09:17
马年将至,作为一种兼具力量与速度的动物,马正受到格外的关注。
2026-02-12 09:12
工业和信息化部等五部门近日印发《关于加强信息通信业能力建设支撑低空基础设施发展的实施意见》。加强监管能力体系建设,规划无人机专用号段,推动“一机一码一号”能力建设,探索标识解析在无人机领域的应用,形成无人机通信资源精细化管理。
2026-02-11 09:25
全球森林逐渐被快生树木主导,而稳定生态系统的慢生树种正在消失。“我们关注的是极为独特的物种,它们主要集中在生物多样性丰富、生态系统联系紧密的热带和亚热带地区。“此外,在现在和未来受到干扰的地区,非本地物种可能会加剧对光、水和养分的竞争,从而使本地树木更难生存。
2026-02-11 09:32
中国科学院动物研究所研究员王红梅带领的“灵长类胚胎发育的规律解析与体外模拟团队”,用27年的接力攻坚,把灵长类早期胚胎发育这个看不见、摸不着的“黑匣子”,变成了清晰可见的“生命剧本”。
2026-02-11 09:32
截至1月28日,“横竖都是世界第一”的贵州花江峡谷大桥累计接待游客突破130万人次,通行车辆超20万辆次,持续为区域发展注入新动能。大桥带来的发展溢出效应令人瞩目,而深入大桥肌理探查,你会发现,支撑起这座庞然大物的每根细钢丝,全部都是“中国造”。
2026-02-11 09:31
加载更多