正在阅读: 宇宙中的“雾霾”——星际尘埃
首页> 科普频道> 天文前沿 > 正文

宇宙中的“雾霾”——星际尘埃

来源:光明网2018-10-10 10:09

调查问题加载中,请稍候。
若长时间无响应,请刷新本页面

    银河系的“雾霾”

    说起北京,大家立即就想到雾霾。大家都讨厌雾霾,听说过谁看到雾霾就特高兴的吗?就有这么一些天文学家听见了雾霾就兴奋的不行。不过他们关心的雾霾不在北京城,而在遥远的星际空间。

    在一个没有光污染的地方仰望夏夜星空,天上最美的就是银河了,璀璨河汉,银光闪烁,波光粼粼。但如果你亲眼目睹银河,还会发现在繁星中密布着很多像乌云一样的暗条。这些暗色的云就是银河系中的“雾霾”,被天文学家称之为“星际尘埃”。

宇宙中的“雾霾”——星际尘埃

    图1. 银河系

    图片拍摄:北京市第十二中学牛雨萱/浦士毕

    在宇宙中,群星间并不是真空,而是分布着气体和尘埃(微小的固态颗粒)。它们统称为“星际介质”。平均而言星际介质的密度大约为每立方厘米100万个分子。多不多?真不多,因为实验室里如果你能让容器达到每立方厘米100亿个分子的水平,就可以称为真空环境了。换句话说星际介质的密度是实验室真空密度的万分之一!

    星际介质的主要成分包括氢原子和氦原子,也有少量简单分子,这些都是以气体形式存在的。除此以外,就是大约占据星际介质百分之一的尘埃颗粒。就是这一点点尘埃颗粒造就了银河系中的“霾”。

    星际尘埃的组成

    天文研究发现,星际尘埃中包括了石墨、硅酸盐、多环芳香烃、水冰等,这就像水加煤灰(这准备做煤球吗?),再掺些沙子,最后撒上些石油搅拌在一起。

宇宙中的“雾霾”——星际尘埃

    图2. 石墨Rob Lavinsky

    图片来源:iRocks.com

宇宙中的“雾霾”——星际尘埃

    图3. 水晶

    图片来源:JJ Harrison

    听起来这天上也不比北京的空气干净。但正是这脏兮兮的一团东西,成为了解开许多宇宙谜团的钥匙。像地球这样的岩石行星就是由围绕在恒星周围的雾霾凝聚而成。更重要的是生命分子的产生也可能与这团灰尘紧密关联。

    星际尘埃中的碳哪里来的呢?它其实是恒星燃烧的产物。恒星内部就是一个持续了上百亿年的核熔炉,时刻发生着核聚变反应:氢变成氦,氦又会聚成碳,氧等更重一点的原子。

    等到哪天恒星内部燃料消耗完了,也就快死了。这时候恒星会把大量物质吐出来返还给星际介质,所谓“尘归尘,土归土”。不过呢,返还的物质中氢原子变少了,其它质量大的原子增多了,例如碳。

    所以,恒星和汽车一样都会积碳。碳原子在条件合适时难免就聚在一块攀亲叙旧,一来二去就形成了石墨之类的大块颗粒。沙粒的主要组成——硅酸盐的来源也是类似的过程。

    那石油是哪里来的?这得从石油的主要成分多环芳香烃说起。多环芳香烃是由很多碳原子和氢原子构成的复杂有机分子。下图即为它的结构示意。六个碳原子手拉手形成一个环,环环相扣就成了多环芳香烃。虽然目前天文学界还没有一个成熟的观点解释多环芳香烃的来源,但很多猜测认为它同生命起源相关。

宇宙中的“雾霾”——星际尘埃

    图4. 多环芳香烃的结构示意图,

    其中黑色的是碳原子,白色的是氢原子

    探测星际尘埃

    恒星观测很容易,因为它们会发出可见光。但是研究尘埃就没那么容易了。煤球和石油不烧的时候不会发光,沙子就是烧也烧不起来。所以用光学望远镜看不到尘埃发出来的光。但是这也难不倒天文学家,他们想到了至少三种方法探测星际尘埃。

    散射

    虽然尘埃自己不发出可见光,但通过遮挡背后的恒星光产生暗云,如图5所示。这些尘埃颗粒大小为零点几微米,只有头发丝直径的几百分之一,光线穿过它们的时候会发生散射。散射光的波长与尘埃颗粒的大小有关。天文学家通过测量穿过尘埃的背景光在不同波长上被削弱的程度(官话叫“星际消光”),就能够猜测出尘埃的多少、颗粒的大小、乃至大致组成。

宇宙中的“雾霾”——星际尘埃

    图5. 宇宙中的暗云,主要是尘埃构成

    图片来源:ESO

    连续谱辐射

    星际尘埃会在红外波段产生连续谱辐射。这些连续辐射暴露了尘埃的温度等物理信息。斯皮泽望远镜、赫歇尔望远镜、普朗克望远镜等空间望远镜都对星际尘埃辐射的探测做出过很大贡献。

    吸收与发射

    尘埃分子中的电子也会像原子那样受到特定波长光线的激发产生跃迁,从而会吸收特定波长的光子。当背景光穿过尘埃分子的时候,由于这些特定波长的光被吃掉(吸收),就在光谱中留下一条吸收线。除了电子跃迁吸收能量,化学键振动和分子自旋也都会从穿过的电磁波中吸收特定能量而产生吸收线。

    分子总是喜欢保持在低能级状态,因此很快它们就会把吃进去的能量再吐出来。这个过程会在电磁波特定波长上形成一条发射线。理论上可根据这些吸收/发射线的位置可以判定分子类型。

    分子类型的证认

    因为分子又是电子跃迁,又是化学键振动,还会自旋,各种吸能手段同时使用,就造成了它们的吸收/发射线看上去比原子的复杂很多。这带来了一个大难题——这么热闹的光谱线,到底是哪种分子产生的?

    自1922年以来,天文学家在从紫外到近红外的恒星光谱中陆续发现了几百条来自星际分子的吸收线,但就是无法确认它们是由哪些分子产生的。成为了宇宙一大谜团,天文学家还把它们命名为弥散星际带。

    直到2015年,有天文学家声称确认了其中三条吸收线是来自一种石墨烯离子(C60+)。下图就是这种长得像足球一样的奇特有机分子。这是人类首次确认了弥散星际带的载体分子。也是首次确认了石墨烯在星际空间的存在。

宇宙中的“雾霾”——星际尘埃

    图6. 足球烯(C60)的分子结构。每个球都是一个碳原子,它失去一个电子后形成正离子C60+

    图片来源:ewels.info

    尽管一些专家言之凿凿,但是争议仍然存在。最近就有研究质疑这三条吸收线压根就不是石墨烯。在星际弥散带近百年的研究历史中反复上演着这样的戏码——一拨人先声明证认了某个分子,另一拨人很快就来打脸。这也一定程度上反映了星际介质研究是极其困难的工作,不仅要有耐心、有智慧、还要脸皮厚不怕后人打啊。

    作者介绍:

    刘超,中国科学院国家天文台研究员。主要从事银河系的结构与演化、星系动力学、星际消光、恒星物理等研究。

    美编:彼得堡

[ 责编:蔡琳 ]
阅读剩余全文(

相关阅读

您此时的心情

光明云投
新闻表情排行 /
  • 开心
     
    0
  • 难过
     
    0
  • 点赞
     
    0
  • 飘过
     
    0

视觉焦点

  • 2025年中国国际海事会展在沪开幕

  • 山东部分地区迎降雪

独家策划

推荐阅读
布局“未来产业”,“十五五”规划建议为什么“点名”量子科技、生物制造等6项产业?如何挖掘中国未来产业的应用价值?
2025-12-03 09:52
记者从工业和信息化部获悉:截至10月末,我国5G基站总数达475.8万个,比上年末净增50.7万个,占移动基站总数的37%。
2025-12-03 09:44
利用美国宇航局“毅力”号火星车捕捉到的声音和电信号,法国科学家提出了火星存在闪电的证据。
2025-12-03 09:41
11月30日,内蒙古自治区乌海市,我国装机规模最大的半固态锂电池电网侧独立新型储能项目成功并网。
2025-12-03 09:34
近日,由中国科学院院士、中国科学院青藏高原研究所研究员丁林领衔的大陆碰撞与高原隆升团队,系统梳理了青藏高原隆升的历史细节。
2025-12-03 09:28
建设教育强国,基点在基础教育。 特别值得一提的是,我校教师创新性地构建了以跨学科项目学习为核心、贯通小初高认知发展,融合科学家精神、工程师思维与设计师视角的科学教育“PRIDE项目式课堂”模式。 此外,科学教育联合培养共同体,也是学校科技教育的有力支撑。
2025-12-02 10:09
今年12月2日是第十四个全国交通安全日,相关部门将围绕“文明交通 礼行天下”主题开展一系列活动。”  公安交管部门提醒:重载车辆、新手驾驶人等慢速群体尽量使用右侧车道通行,减少因较大速度差导致交通拥堵或事故。
2025-12-02 10:08
作为国内单机容量最大、效率最高燃气机组,与传统燃煤机组相比,应急调峰能力大幅提升,能源利用更高效。其碳排放强度仅为百万千瓦燃煤机组的40%,且几乎不产生颗粒物和二氧化硫,从源头减少污染。
2025-12-02 10:08
近日,法国空中客车公司与欧盟航空安全局相继发布声明,要求全球约6000架空客A320系列飞机紧急停飞维修。“此次事件的核心原因是受到单粒子翻转的影响,同时也暴露出航空电子设备对高空飞行环境中太阳辐射影响应对不足。
2025-12-02 10:07
转录组测序显示,受体植物中茉莉酸信号通路被激活;高效液相色谱-质谱检测证实,受体植物根系中茉莉酸及活性衍生物JA-Ile含量增加。”  该团队发现,茉莉酸甲酯处理能模拟菌根网络介导的互作效应,激活植物茉莉酸通路,改变根际微生物组,富集有益菌。
2025-12-02 10:06
中国科学技术大学教授潘建伟、朱晓波、彭承志、龚明等与山西大学教授梅锋等合作,基于可编程超导量子处理器“祖冲之二号”,首次在量子体系中实现并探测了高阶非平衡拓扑相。
2025-12-01 09:33
在距离海平面千米的深海,阳光无法抵达,海水冰冷,压力极大。然而,在环境极端的“海底沙漠”中,却生长着形态各异、结构复杂的深海珊瑚,构建起生机勃勃的海底“秘密花园”。
2025-12-01 09:32
推动科技创新和产业创新深度融合,是加快发展新质生产力、建设现代化产业体系的内在要求,也是塑造高质量发展新动能新优势的战略抉择。
2025-12-01 09:23
红小豆又名赤豆、小豆,是中国老百姓餐桌上一种颇受欢迎的杂粮,但科学家对其基因组的了解还不够深入。
2025-12-01 09:23
在“梦想”号问世之前,中国科学家想要开展深海大洋钻探研究,只能“借船出海”。
2025-12-01 09:22
11月28日晚,2025中国・E-TOWN电竞节超级冠军杯开幕式在位于北京经济技术开发区(又称“北京亦庄”)的北京智慧电竞赛事中心举行。
2025-11-28 20:51
加强重点液态食品道路散装运输监管,守护“舌尖上的安全”;督促连锁餐饮企业落实食品安全主体责任,规范一些连锁餐饮企业“只开店、不管店”问题;“旧国标”电动自行车全面停售……12月新规,一起来看!
2025-11-28 17:11
从神舟二十号乘组换乘返航的刷屏热搜,到“太空烧烤”的温情热议;再到“十五五”期间中国计划发射4颗科学卫星任务……近期中国航天事业的新进展层出不穷。
2025-11-28 09:15
人工智能是引领新一轮科技革命和产业变革的战略性技术,其标准化建设直接关系到关键核心技术自主可控、智能成果普惠于民以及在全球科技治理中赢得话语权。
2025-11-28 05:00
在黑龙江省齐齐哈尔市甘南县东阳镇隆胜村树莓园,凛冽寒风中,东北农业大学园艺园林学院教授霍俊伟正蹲在田埂上仔细查看果树修剪情况。
2025-11-28 05:00
加载更多