点击右上角微信好友

朋友圈

请使用浏览器分享功能进行分享

正在阅读:天文学上的观察与联想
首页> 科普频道> 天文前沿 > 正文

天文学上的观察与联想

来源:光明网2020-09-04 16:42

调查问题加载中,请稍候。
若长时间无响应,请刷新本页面

  当一件精美的物品放在眼前,你大概会眼前一亮,用目光观察并欣赏。大脑也随之跟上,加入品鉴的行列,用的方式则是——联想。凭借联想,一件物品在脑海中扩展为一个画面、一段回忆。观察与联想常常是不可分离的,作为一门基于观测的科学,天文学同样重视联想。眼睛加足马力、头脑快速旋转,重大发现就来到我们面前。

  一、古希腊学者如何确定宇宙是有限的

  古希腊学者在确定了地球是球形之后,下一个问题就是宇宙是有限的吗?自然,古希腊学者也没有任何观测器材。他们主要是通过观察星空来确定是否宇宙是有限的。在那个时代,许多对天空的观察都是牧羊人做出的,因为他们经常在野外过夜。可是观察星空怎样才能知道宇宙是否有限呢?古希腊学者主要是通过对森林的观察来联想的。

  从森林外面向森林里面看,是密密麻麻的树干、树枝和树叶,几乎看不见天空;而从森林里面向森林外面看,则能清楚地看见天空。由此,古希腊的学者想,如果宇宙是无限的,就相当于我们从森林外面向森林里面看,天空中应该布满星星;如果宇宙是有限的,就相当于我们从森林里面向森林外面看,天空中的星星应该是有限的。而实际上我们看到的夜空确实不是密密麻麻布满星星。因此,宇宙是有限的。

  在这个例子里,观察的是——森林和夜空,联想的是——宇宙是不是有限的。

  对夜空的观察,又引出从另一个角度考虑夜空与宇宙的关系,也就是后来的由德国医生兼天文学家奥伯斯(Heinrich Wilhelm Matthias Olbers, 1758 – 1840)在1823年提出的奥伯斯佯谬(Olbers' paradox),也叫“黑暗的夜空悖论”(dark night sky paradox)。即:如果宇宙是静止的,而且在大尺度上是均匀的,由无数的恒星组成,那么来自地球上的任何视线都必须在非常明亮的恒星的表面终止,因此夜空应该是完全明亮的。这与观察到的黑暗和夜晚的不均匀性相矛盾。

  在这个例子里,观察的是——半明不暗的夜空,联想的是——宇宙是不是均匀的。

  二、地球外生命

  地球外的生命是人类最关心的问题之一。大家知道,我们在夜空里看到的星星都是能发光的恒星,而恒星都是燃烧着的“太阳”,不可能拥有生命。能够存在生命的是行星。可是行星不发光,我们看不见他们,甚至不可能知道是否有行星在围绕着一颗恒星运行,科学家怎样知道呢?

  在中学物理里,有一个动量守恒定律。根据动量守恒定律,月球围绕地球运动,实际上是地球与月球一起围绕它们共同的质量中心运动。而太阳系八大行星围绕太阳运动实际上是太阳与八大行星围绕它们共同的质量中心运动。天文学家每天观测太空中一个一个的遥远恒星,实际上是观察它们的运动轨迹,再根据动量守恒定律来计算每个遥远恒星可能有几个行星,每个行星的可能质量和轨道,再核对恒星的运动轨迹是否可以用存在的这些行星来解释。然后,再进一步确定行星的运行轨道。

  在这个例子里,观察的是——恒星的运动,联想的是——行星的轨道。

  这也就是天文学中的天体测量学(Astrometry),最初天体测量学是制造星表而产生的,以便天文学家可以跟踪星体。

  确定了行星的运行轨道之后,我们仍然无法看见行星,因为行星不发光,反射的光也很难到达地球。但是,当行星的运动轨道越过恒星时(就像我们在地球上看到日食时那样),我们就可以看见行星了。然而看见行星并不等于就知道了是否行星上有生命存在。那科学家怎样判断生命的存在呢?

  科学家主要是根据行星的大气中是否存在以下四种气体来确定是否有生命,那怕是最简单的生命。因为这四种气体:水、二氧化碳、臭氧、甲烷(沼气),都和生命有关。

天文学上的观察与联想

图1.四种与生命有关的气体(图源:互联网)

  当行星越过恒星时,恒星的光线会穿过行星的大气层到达地球。因为这4种气体会吸收不同的光谱,科学家分析到达地球的光谱就能知道是否有这4种气体存在。

天文学上的观察与联想

图2.由于吸收臭氧和二氧化碳光谱的变化(图源:互联网)

  在这个例子里,观察的是——行星的大气的组成,联想的是——行星上的生命。

  三、维京人的航行

  大家都熟悉中国的四大发明中有指南针。有了指南针,航行就方便得多。据记载我们中国人用指南针航行是在宋代,大约是1040—1044年间。

  实际上,仅仅有指南针并不意味着顺利航行,因为地球有些地方的地球磁场异常,如加拿大的拉布拉多沿岸(Labrador)。实际上,铁矿也会影响指南针的指向。甚至船上的铁器,包括固定罗盘的铁钉都会影响罗盘的方向。当然,近代的罗盘带有自动校正系统,包括用软件校正。

  很多人都参与到对罗盘的改进中来,大科学家开尔文(William Thomson, 1st Baron Kelvin,1824–1907,绝对温度就是用他的名字命名的)也参与进来,并在十九世纪80年代获得了一个专利,在罗盘两侧配2个铁球来抵消外来磁场和铁器的影响,这种罗经柜上的球(图7)被俗称为开尔文球。

天文学上的观察与联想

图3.罗经柜(罗盘两侧配有两个铁球(Q)来抵消外来磁场和铁器的影响)(图源:互联网)

  在这个例子里,观察的是——外来磁场和铁器对罗盘的影响,联想的是——用铁球(Q)来抵消外来磁场和铁器对罗盘的影响。

  那么,在指南针(罗盘)发明和应用之前,人类是靠什么来确定方向进行航行的呢?人类最早的航行是在能看见海岸线的距离航行,当然,那时的船也主要是靠人为动力。随着船只性能的改善,人类有了远距离航行的可能性。

  在太平洋,波利尼西亚人主要通过观察鸟类、星座、波浪和涌浪来确定附近的陆地。并用歌曲、神话故事和星图来帮助人们记住重要的导航信息。在印度洋和中国南海,人们主要通过季风来判断方向。在地中海,腓尼基人和迦太基人使用测深锤测量海水的深度来确定航船离海岸多远,而且测深锤还附有牛油,从海底吸附上沉积物来判断航线。古希腊海员利用夜晚观察大熊星座航行到了埃及。这些实际上都是观察与联想的例子。

  在欧洲历史上有个著名的维京时代(大约790–1066),维京人的船到达过欧洲很多地方,甚至到达过北美洲。一个有趣的问题就是他们如何导航的。因为维京人是在夏天航行,北欧的盛夏日照时间特别长,因此维京人不可能利用星星导航,而只能利用太阳导航。那维京人是怎样导航的呢?

  实际上,维京人常常沿北纬61度航行,这是从挪威到格陵兰的航线(Horvath G, et al. On the trail of Vikings with polarized skylight: experimental study of the atmospheric optical prerequisites allowing polarimetric navigation by Viking seafarers. Philosophical Transactions of the Royal Society B 2011; 366: 772-782)。

天文学上的观察与联想

图4.维京人沿北纬61度的航行(航线3)(图源:互联网)

  在格陵兰岛南部,本世纪考古学家发现了一个木制的圆盘的残留部分(图9)和石器,圆盘上刻有直线和曲线。最后,科学家们确定这个木制的圆盘是日晷。

天文学上的观察与联想

图5.考古发现的木制日晷(图源:互联网)

  科学家们对考古发现的日晷进行了复原(图10)。复原的日晷上刻出的直线、曲线和细纹引起科学家们的兴趣,因此进行了立体复原。

天文学上的观察与联想

 

图6.复原的日晷(灰色的部分是没有被考古发现的部分)(图源:互联网)

  在中国,日晷是用来确定时间的。那维京人日晷上的直线和曲线有什么意义呢?最后的分析发现维京人用这种日晷来导航。如果沿北纬61度航行,维京人航行的时间是五月到八月,水平放置日晷,太阳影子从日出到日落是沿着日晷中的曲线移动,当太阳影子沿曲线移动时,直线指的方向是春分和夏至的坐标,而刻出的细纹指向北极的方向。这样维京人首先将日晷转动到太阳影子投在曲线的位置,再根据早晨、中午和傍晚进一步调整日晷的位置,最后细纹就指向北方。

  在这个例子里,维京人观察的是——太阳在日晷上的移动,维京人联想的是——春分和夏至的坐标、北极的方向。科学家观察的是——破碎的木制圆盘,科学家联想的是——日晷和维京人沿北纬61度的航行。

  但是,当冷空气经过温暖的海面时,水蒸气会形成所谓的“冻烟(frost smoke)”,也就是著名的“北极海烟(Arctic sea smoke)”,其高度可达几百米。在这种情况下,如果是太阳初升或日落西山,航海者的头上是晴空万里,而周围则是浓雾弥漫,根本无法辨别方向。另一种情况是乌云遮日的时候,这种情况往往持续几天。还有一种情况是在夏季,北纬60度,傍晚的太阳从地平线消失之后有长达1.5小时的暮光,而清晨太阳从地平线升起前也有长达1.5小时的曙光,也就是长达3小时蒙蒙亮的天,但没有太阳。维京人在这三种情况下怎样航行呢?

天文学上的观察与联想

图7.北纬70度夏季的长达4小时的曙光和暮光。红色、橙色和黄色的球体表示太阳的位置,橙色代表曙光和暮光时的太阳位置(图源:互联网)

  因此,1967年丹麦的考古学家兰姆斯库(Ramskou)提出一种假说(Ramskou T. Solstenen. Skalk 1967; 2: 16-17),认为维京人使用太阳石(sunstone)导航。因为,在十四、十五世纪冰岛的教会和修道院的纪录里,提到了太阳石。

  2013年,人们在英国海峡群岛的奥尔德尼岛(Alderney)附近发现了一艘十六世纪沉没的战船残骸,在残骸中人们发现了太阳石。这就进一步给这种使用太阳石导航的理论提供了佐证。

  太阳石是斜长石的一种,因其晶体中含有赤铁矿、针铁矿等红褐色片状矿物包裹体,对光反射而出现金黄色耀眼的闪光。在挪威、瑞典、美国和西伯利亚均有产出,多用来做珠宝饰品。但是,冰岛产的太阳石却与众不同。冰岛太阳石是碳酸钙的斜方六面体晶体,这种晶体内没有直角。

  直射的太阳光不是偏振的光线,而折射的太阳光则是偏振的光线。因为我们的蓝天是太阳折射的光,因此是偏振光。这就是为什么用偏振镜照相可以遮住偏振的蓝光,增加相片的对比度。有趣的是冰岛太阳石的这种晶体结构导致双折射的光学现象,通过晶体观察的物体将出现双像。在旋转冰岛太阳石时,会发现一个像始终不变,而另一个像在改变。在没有太阳的时候,将太阳石水平旋转,当两个像完全一样时,太阳石的指向就是太阳的位置。就这样,维京人能够顺利地航行。

  在这个例子里,维京人观察的是——太阳石产生双像的变化,维京人联想的是——太阳的方向。

  四、光速的测量

  最早测量光速的人是意大利的科学家,伽利略。伽利略的测量是利用二个人在夜晚站在二个山头上,第一个人向第二个人打光信号同时开始计时。当第二个人看到光信号时,立刻回复光信号,第一个人看到回复的光信号时,确定光的往返时间。我们知道光速很快,所以伽利略的这个实验并没有测到光速。但是从另外一个角度,这个实验证明光速很快。

  第一个真正测量光速的人是丹麦科学家奥尔·克里斯滕森·罗梅尔(Ole Christensen Rømer,1644–1710),罗梅尔是天文学家,每天观测天体的运动。在太阳系的八大行星里,木星是有卫星的,比较重要的是木卫一(Io)、木卫二、木卫三、木卫四等。其中木卫一绕木星旋转一周的时间是42小时27分33秒。

天文学上的观察与联想

图8.木星的卫星(图源:互联网)

  也就是说,每隔42小时27分33秒,我们应该观测到木卫一从木星阴影中出现。科学家经过长期的观察,发现每年有一段时间木卫一从木星阴影中出现的时间越来越晚。最晚是晚多少呢?3分半!而每年另一段时间,木卫一从木星阴影中出现的越来越早。最早是早多少呢?也是3分半!

天文学上的观察与联想

图9.丹麦科学家罗梅尔对木卫一运行规律的分析(图源:互联网)

  罗梅尔在1676年对这个问题进行了这样的分析。在图9中A点是太阳,B点是木星,EFGHLK构成的大圆是地球围绕太阳进行圆周运动(那时人类已经知道地球围绕太阳运动,但运动的轨迹还是不清楚,因此罗梅尔在这里是按地球围绕太阳进行圆周运动来分析的),CD构成的圆是木卫一绕木星进行圆周运动。

  木卫一离开木星阴影是D点,进入木星阴影是C点。因为木卫一绕木星一周的时间是不变的。所以罗梅尔得出结论,我们看到木卫一走出阴影越来越晚,是由于我们地球离木星越来越远的缘故,而这3分半的时间是由于地球在一年中从L点运行到K点的缘故,光也从L点用3分半走到K点。因为L点到K点构成了圆形的弦,如果知道圆的半径和圆心角,就可以算出弦长,再除以3分半就可以知道光的速度了。

  由于种种原因,罗梅尔本人没有计算具体的光速,而是同时代的荷兰数学家惠更斯(Christiaan Huygens,1629–1695)在和罗梅尔通信后,用罗梅尔的数据估算出光速大约是地球直径的16.67倍。

  在这个例子里,观察的是——木卫一的周期,联想的是——光的速度。

  作者简介:吴光,1984年毕业于天津医学院,1992年在俄罗斯国立医科大学获医学博士学位。1992-2000在意大利乌迪内大学、日本国立水俣病研究所、法国马赛大学做博士后。2001-2002在瑞士巴塞尔Novartis药物公司任模型专家。2014年起任广西科学院研究员。

[ 责编:赵宇豪 ]
阅读剩余全文(

相关阅读

您此时的心情

光明云投
新闻表情排行 /
  • 开心
     
    0
  • 难过
     
    0
  • 点赞
     
    0
  • 飘过
     
    0

视觉焦点

  • 甘肃榆中:基础设施抢修有序推进

  • 大山深处的“守光者”

独家策划

推荐阅读
实验室是科技创新的重要摇篮,但里边有不少危险而又昂贵的设备,可能对科研工作者人身和财产安全造成威胁。如何织密安全防护网?
2025-08-08 10:25
中国科学技术大学俞书宏院士团队成功开发出一种可闭环生物回收的纤维素基介电薄膜,能够提高电子器件的循环利用率,从而减少电子废弃物。
2025-08-08 10:16
日前,济南量子技术研究院团队与深圳国际量子研究院团队合作,在可见光集成光学领域取得重要进展:成功研制出一套新型可见光矢量光谱分析仪。
2025-08-08 10:12
中国林科院林业所林木细胞遗传研究组近日提出了研究裸子植物生长停滞可塑性的独特模型。这一成果填补了人们对裸子植物发育可塑性认识的空白。
2025-08-08 10:11
8月6日,揽月月面着陆器着陆起飞综合验证试验在位于河北省怀来县的地外天体着陆试验场圆满完成,此次试验是我国首次进行载人航天器地外天体着陆起飞试验。
2025-08-08 10:09
近日,中国科学院大连化学物理研究所研究员吴凯丰团队采用胶体量子点溶液作为增益介质,通过法布里-珀罗谐振腔耦合及双脉冲泵浦设计,开发出连续稳定工作10天以上、能量转化效率大于17%的量子点液体激光器。
2025-08-07 10:18
近日,中国农业科学院农业基因组研究所的研究团队深入解析了中亚野猪种群在跨越欧亚大陆百万年的迁徙历程中适应环境的独特遗传密码,为理解大型哺乳动物如何应对环境变化提供了全新视角。
2025-08-07 10:18
无论是钢琴家指尖流淌出的动人旋律,还是外科医生在显微镜下的精准操作,甚至是母亲为孩子系鞋带时的温柔细致……
2025-08-07 03:40
月球,地球最亲密的邻居,它的“婴儿期”是什么样的?为破解这个谜题,中国地质大学(北京)科学研究院王水炯教授团队和中国科学院地质与地球物理研究所李秋立研究员团队合作
2025-08-07 03:40
近日,国务院常务会议讨论并原则通过了《中华人民共和国耕地保护和质量提升法(草案)》(以下简称《草案》),决定将《草案》提请全国人大常委会审议。
2025-08-07 03:40
长期以来,石油衍生塑料的污染问题,特别是微塑料对食物和水源的有害影响,一直困扰着人类。研究人员设计了利用恶臭假单胞菌等菌株,将二氧化碳、木质素和食物垃圾等废物转化为生物塑料的方法。
2025-08-06 09:38
南方科技大学地球与空间科学系副教授林玉峰与合作者揭示了地球磁场发电机对地核流体黏度的不变性,并发现早期地球模型可产生与现今观测高度相似的地磁场结构和强度。
2025-08-06 09:35
中国工程院院士、中国农业科学院作物科学研究所研究员万建民表示,纹枯病是威胁全球水稻生产的重大病害,年均造成产量损失10%至30%。
2025-08-06 09:33
近年来,受全球气候变化影响,灾害性天气的突发性、极端性、不确定性愈加明显,特别是进入汛期,突破历史纪录和传统认知的灾害频繁发生。
2025-08-06 09:25
农业农村部、生态环境部日前联合发布《中国渔业生态环境状况公报(2024)》,公布2024年中国渔业水域水质、沉积物、浮游生物等18项指标的生态环境监测情况。
2025-08-06 09:22
林炳亮:基孔肯雅病毒不会通过日常接触引发人际传播,也不会通过咳嗽、打喷嚏等传播。林炳亮:基孔肯雅热和登革热的传播途径一样,都是由伊蚊传播,因此防控措施也一样。基孔肯雅热的治疗尚无特效药物,以对症治疗为主,并做好防蚊隔离。
2025-08-05 10:16
黄皮、龙宫果、嘉宝果、蛇皮果……不少爱吃水果的消费者发现,无论是在线下超市里,还是在线上购物软件里,市面上出售的新奇小众水果越来越多了。泰国的榴莲、山竹都是很热门的水果,我们在泰国采购过程中发现,当地的榴莲果园里会混种一些龙宫果的树木。
2025-08-05 10:15
》显示,长江流域水生生物资源恢复态势总体向好,完整性指数持续提升。
2025-08-05 10:14
近30年来,程芳琴带领团队聚焦煤、电、冶等产业中产生的工业固废处理处置问题,致力于工业固废的低碳化、高值化利用和无害化处置。通过“预处理活化—资源化利用—无害化处置”的技术链条,让工业固废逐步从环境负担转化为可利用资源,促进循环经济发展。
2025-08-05 10:13
物理学家利用一种仅几千克重的装置从核反应堆中捕获了中微子,这种装置的重量比标准的中微子探测器小几个数量级。Scholberg的COHERENT探测器首次利用了一种名为相干散射的现象,即中微子与整个原子核发生“散射”,而不是与构成原子的粒子发生散射。
2025-08-05 10:11
加载更多