点击右上角微信好友

朋友圈

请使用浏览器分享功能进行分享

首页> 科普频道> 天文前沿 > 正文

天外来“客”

来源:光明网2021-06-03 18:12

调查问题加载中,请稍候。
若长时间无响应,请刷新本页面

  在众多神奇而有趣的天文事件中,有一种天象十分显著,甚至可以用人眼捕捉到:在一片黑暗的天区中突然出现一颗明亮的恒星,在夜空持续一段时间后隐没不见。古天文关于这种神秘天象的记载最早出现于《汉书·天文志》中, “元光元年(公元前134年)六月,客星见于房。” 该记录中提到的“客星”就是指今天所说的新星和超新星。

天外来“客”

图1. 《汉书·天文志》(图源:中国古代新星和超新星的记录丨科学史)

  这类特殊天体平时十分黯淡,隐匿于广袤的夜空中无法分辨,然而演化到某一阶段时亮度会急剧增加乃至肉眼可见。“客星”中的新星即是我们所谈论“主角”,激变变星的一个子类。

天外来“客”

图2. 闪现的新星 (图源:NASA)

  激变变星物理图景

  放眼整个宇宙,恒星可算是构成各类天体系统(星团、星系等)的基本组件,也是天空中最常见的天体。作为最小的单元,恒星或独立存在,或以双星、多星系统结伴而行。激变变星属于密近双星中的半接双星类型,即两颗恒星中其中一颗的物质充满了洛希瓣。

  在激变变星的系统中,白矮星(主星)作为“捕食者”不断地从具有更大质量的“捐赠者”(伴星)那里掠夺物质,带有强大角动量的物质无法立即融入白矮星,而在其周围形成一个气体吸积盘。伴星通常是一颗晚型主序星,在特殊情况下也可能是一颗演化中的巨星甚至是一颗白矮星(伴星同样是白矮星的AM CVn不在文章讨论范畴内)。

天外来“客”

图3. 激变变星艺术图 (图源:NASA)

  激变变星“大家族”

  作为双星系统的同时,激变变星还兼具变星的角色,亮度会随时间发生明显的变化。根据光变的幅度和时标,激变变星包括以下五种子类:经典新星,再发新星,矮新星,类新星和磁激变变星。经典新星是所有子类中爆发最为显著的类型,有且只有一次。爆发前后星等变化最小约有6等,而最大可至19等。

  星等变化或许不能给人以最直观的感受,那么我们把它转换成亮度变化,相差10个星等,亮度即是原来的10000倍。从这一事实来看,新星爆发的剧烈程度可见一斑,它也是仅次于超新星爆发的一个耀眼的天象活动。再发新星,顾名思义,是被观测到至少两次以上爆发的新星。从已观测再发新星的统计结果来看,两次爆发的时间长达10年以上。和经典新星的爆发模式十分相似,再发新星在爆发过程中的亮度也会经历快速的上升和缓慢的下降。

天外来“客”

图4. 一颗新星的光变曲线 (图源:Michael K. Rulison)

  矮新星是激变变星所有类型中成员最为丰富,并且研究也最为广泛的一个子型。矮新星的爆发通常归因于吸积盘的不稳定性,爆发时吸积盘会缓慢地扩张。爆发期过后,矮新星会进入宁静期,而此时吸积盘会缓慢地收缩,就像会呼吸一样。

  根据爆发时光变曲线的各种不同形态,矮新星又可以细分为三个亚型:Z Cam型,SU UMa型,和U Gem型。

  相比于新星,矮新星爆发地更为频繁,规模和持续时间都远远小于前者。一般来说,这类激变变星在爆发期间的星等变化在2到6个星等,持续时间为数天到数周,而爆发时间间隔通常是20天到数年不等。

  以上三种类型的激变变星都经历过剧烈的爆发阶段,而所有没有经历过爆发的类型都统一归类为类新星。这一简单粗暴的定义使得类新星囊括了多种多样的激变变星类型。在该文章中提到的类新星仅指无磁场类型,包括UX UMa型,VY Scl型和SW Sex型。这种类型的激变变星在光学特征上类似于爆发后的新星,在光变特征上会表现出不规律的亮度下降。

  最后一类是磁激变变星,即可以探测到白矮星主星有显著的磁场强度。早期,这一类激变变星因无爆发阶段而被归类为类新星,直到上世纪70年代才被拎出来单独成类。按照磁场强弱对吸积过程造成的不同影响,磁激变变星被分为两大类:AM Her型偏振星和DQ Her型偏振星。两者的区别在于前者由于足够强的磁场致使吸积盘被打散而只剩下白矮星磁极附近的吸积柱,而后者的磁场强度比前者弱一到两个数量级,因此会有部分吸积盘“幸存”下来。

  激变变星的轨道周期空缺和最短轨道周期

  双星轨道周期是这类系统动力学演化最重要的示踪器。激变变星是一类短周期双星系统,大部分样本的轨道周期都小于10个小时。天文学家在激变变星轨道周期进行统计时发现了一个奇特的现象:位于周期2~3小时范围内的大部分激变变星“离奇失踪”,以至于在这个时段出现了周期空缺。除此之外还有一个显著的特征,整个轨道周期分布图在76分钟左右戛然而止,而没有一个缓变的过程。

天外来“客”

图5. 激变变星的观测轨道周期分布 (图源:Katysheva, et al., Astrophysics, 2003, 46, 114)

天外来“客”

图6. 激变变星各个亚型的观测轨道周期分布 (图源:戴智斌)

  对于2-3小时的轨道周期空缺,目前被普遍接受的理论解释是电磁制动效率的降低导致伴星离开洛希瓣,最终使得双星系统脱离激变变星的范畴。想要理解这一理论,我们就需要对激变变星“前世今生”的认知有一个大概的框架。激变变星理论上应起源一个远距离双星系统,随着演化过程中角动量的损失,双星间距变短同时轨道周期不断减小。

  对于周期大于3小时的激变变星,电磁制动和引力辐射主导了整个双星系统的演化。在周期空缺边缘3小时处,伴星质量的不断减少使其内部物理结构发生了变化,这一变化的最终后果是电磁制动效率降低,伴星半径收缩而离开了洛希瓣。

  而在周期空缺的另一边缘2小时处,伴星重新充满洛希瓣,相应地,激变变星的吸积过程“卷土重来”。观测上,轨道周期处于2~3小时的后共包层双星的发现在一定程度上证明了该理论的正确性。尽管如此,电磁制动效率降低理论仍然面临着许多不可解释的挑战。

  例如问题之一,伴星内部结构为什么恰好在轨道周期在3小时处发生变化,变成全对流层结构。由此看来,约束双星结构和演化的理论假设还需要经过漫长的实践检验。

  跨越周期空缺带之后,激变变星继续向更短周期的系统演化直至轨道周期的最小极限~76分钟处。为了解释最短截至周期的存在,天文学家认为此时不断损失物质的伴星已经达到维持氢燃烧的质量下限,从而进入了简并态。

  伴随伴星的这种改变,整个激变变星系统反向掉头并开始向更长周期演化,成为“period bouncer”。然而这一理论的提出涉及了许多研究并不成熟的天文学领域,至今仍是激变变星研究未解密题之一。

  激变变星样本的搜寻

  迄今为止,激变变星样本的发现来自各种不同的渠道,包括光变,光谱和颜色选择,每一种方法的搜寻结果都会有一定的选择效应。最直接有效的方法是利用激变变星尤其是矮新星的爆发特征,在时域测光巡天中搜寻(如CRTS,OGLE,ASAS-SN,MASTER,ATLAS等巡天)。

天外来“客”

图7. Catalina观测的一颗矮新星的光变曲线 (图源:CRTS)

  例如,CRTS和OGLE时域巡天中发现的激变变星均有上千颗。另外,激变变星独特的光谱和测光特征也是将其从一众天体中挑选出的有效手段。

  作为非常成功的巡天项目,SDSS在2000年投入使用,目前已经运作了20年之久并在诸多研究领域取得了显著的成果。自2002年开始,Szkody等人在10年间不断更新了从SDSS数据中搜寻到的激变变星样本,最终得到了285个激变变星的星表,其中有超过一半的激变变星(151个)可以计算得到轨道周期。SDSS优越的深空探测能力使激变变星的研究延伸到了更加黯淡的样本(暗于20等),从而突破了许多基于之前激变变星的研究极限,尤其是轨道周期分布问题。

  从激变变星的光谱获取量来说,LAMOST巡天项目可与之比肩。作为世界上光谱获取率最高的光学天文望远镜,LAMOST已经孜孜不倦工作了10个年头,光谱获取量达到千万量级。如此庞大的天体光谱数据库为天文学研究各个领域提供了丰富的资源。

  侯文等人基于激变变星的光谱特征,利用LAMOST第五次发布数据对该特殊天体进行了全面系统地搜寻,共发现245颗激变变星(对应380条恒星光谱)。

天外来“客”

图8. LAMOST中的激变变星光谱 (图源:Hou, et al., AJ, 2020, 159, 43)

  在SDSS和LAMOST巡天搜寻到的样本中都发现了少数位于周期空缺处的激变变星。从轨道周期空缺被发现开始,天文学家对其存在就一直存在着争议。众所周知,周期空缺是基于已有激变变星的统计分布结果,而统计样本是否完备直接决定了该发现的真实性。2020年,Pala等人借助Gaia DR2数据确定的距离对150pc内的激变变星做了完备性的分析,得出已发现样本占比远远低于真实存在比例的结论。

  因此,要证明周期空缺是真实存在,而不仅仅是由观测统计上的选择效应造成仍然足够完备的激变变星样本。不仅如此,随着越来越多激变变星样本的发现,家族成员中一些极稀有的类型(例如AE Aqr)也被更多地被发掘出来,不断更新天文学家对激变变星的认知。由此,作为激变变星研究领域最为基础也是不可或缺的一部分,以各种方法在不同巡天中对激变变星家族成员的全面搜寻为天文学家们喜闻乐见。

  展望

  尽管激变变星的观测历史可追溯至2000年前,但是对它真正的研究历史不足200年。作为研究天体物理吸积过程的天然实验室,激变变星对研究致密天体并合过程有着得天独厚的优势。并且,由于激变变星在恒星领域身兼数职,推动这一特殊天体的研究无论是对于双星,还是变星的形成和演化研究都有非常积极的作用。

  当然,这些研究的进一步发展无一不需要对激变变星这一族群的物理和演化图景有更准确和更深刻的认知和理解 —— 路漫漫其修远兮,吾将上下而求索。

  作者简介:侯文,国家天文台助理研究员,从事Ae/Be恒星和激变变星的物理性质研究。

  文稿编辑:赵宇豪

[ 责编:蔡琳 ]
阅读剩余全文(

相关阅读

您此时的心情

光明云投
新闻表情排行 /
  • 开心
     
    0
  • 难过
     
    0
  • 点赞
     
    0
  • 飘过
     
    0

视觉焦点

  • 唱针落!战歌化作砍向侵略者的“大刀”

  • 走起!大橘带你打卡四季北京中轴线

独家策划

推荐阅读
国家能源局7月31日发布的信息显示,截至6月底,我国电动汽车充电设施(充电枪)总数已达到1610万个。
2025-08-01 10:17
今年是中国启动国家公园体制改革10周年,中国国家公园建设实现从试点探索、破冰突围到系统协调、全面推进的历史性转变,取得明显成效。
2025-08-01 10:16
31日,中国工程院信息与电子工程学部、中国信息与电子工程科技发展战略研究中心发布《新一代信息工程科技 人工智能新兴技术备选清单》297项,其中约三分之二是首次提出。
2025-08-01 10:11
由我国牵头制定的两项国际标准《高压开关设备和控制设备第313部分:直流断路器》和《高压开关设备和控制设备第315部分:直流转换开关》近日正式发布。
2025-08-01 10:11
复兴油田首期石油2010.06万吨、天然气123.52亿立方米探明地质储量顺利通过自然资源部评审,标志着我国四川盆地首个页岩层系油田诞生。
2025-08-01 10:10
六方金刚石的形成条件极为苛刻,人工合成最大难点在于高温高压下六方金刚石的形成能量高于普通金刚石,因此高温高压产物常以普通金刚石为主,而难以得到六方金刚石。
2025-07-31 10:27
当机器人不再只限于执行预设操作,而是能够具备自主思考和判断,具身智能或许将会很快在更多的社会生活场景中投入应用,为人类的未来社会开创更多可能性。
2025-07-31 10:23
当前,高校应以人民为中心办好让人民满意的教育,奋力构建以人工智能为支撑的人才自主培养新生态,为中国式现代化培养出更多高质量人才。
2025-07-31 10:20
“我们使用导航软件时,经常用到的信号灯倒计时读秒功能,正是基于北斗高精度定位‘透传’的实时位置服务数据实现的。“北斗+人形机器人”“北斗+农机”“北斗+打桩机”……北斗系统持续赋能千行百业,在多个领域实现深度应用与创新突破。
2025-07-31 10:15
7月30日15时49分,在海南商业航天发射场,长征八号甲运载火箭(以下简称“长八甲火箭”)托举卫星互联网低轨06组卫星直冲云霄,将其精准送入预定轨道,发射任务取得圆满成功。
2025-07-31 04:55
科技浪潮下,侨界青年索华也带来创业项目——基于燃气低碳催化的粉末喷涂线研发和产业化,顺应新能源与“双碳”目标趋势。
2025-07-30 09:41
中国国土南北跨越纬度近50度、东西跨经度60多度,带来气候多样性,适宜不同品种的蔬菜、水果生长。答:“十四五”以来,在消费升级与供应链创新的双重作用下,我国果蔬产业发生着诸多变化。
2025-07-30 09:40
面对激荡的国际竞争局势与高质量发展的迫切需求,唯有主动拥抱变革,让人工智能科技创新的“源头活水”充分浇灌产业创新的“广阔田野”,方能赢得战略主动、制胜未来。
2025-07-30 05:00
前不久,甘肃皋兰什川古梨园系统、浙江德清淡水珍珠复合养殖系统和福建福鼎白茶文化系统正式被联合国粮农组织认定为全球重要农业文化遗产。至此,我国的全球重要农业文化遗产数量增至25项,继续领跑全球。
2025-07-30 05:00
29日12时11分,双曲线一号遥十运载火箭在我国酒泉卫星发射中心发射升空,将搭载的恩施硒都山泉号卫星顺利送入预定轨道,飞行试验任务获得圆满成功。
2025-07-30 05:00
北京时间7月27日18时03分,我国在太原卫星发射中心使用长征六号改运载火箭,成功将卫星互联网低轨05组卫星发射升空,卫星顺利进入预定轨道,发射任务获得圆满成功。
2025-07-29 10:17
鸟类因误判透明或反光的玻璃而撞击建筑物,被称为“鸟撞”,是威胁鸟类种群的重要因素之一。
2025-07-29 04:40
日前从江西铜钹山国家级自然保护区获悉,该自然保护区与井冈山大学蜘蛛生物学研究团队开展蜘蛛资源本底调查中发现蜘蛛新物种——广丰合跳蛛。研究成果在国际期刊《生物钥匙》上发表。
2025-07-29 04:40
近日,该中心与重庆师范大学生命科学学院唐安军教授团队,在巫溪县白果林场发现近危物种长叶山兰,这是在阴条岭发现的又一新纪录种。
2025-07-29 04:40
随着大数据和人工智能技术的发展,数字化健康管理成为一种新的生活风尚,帮助人们提高健康管理的效率和质量。但当人们对健康数据的关注逐渐演变为时刻紧盯、过度解读时,这一数字化工具,反而可能催生不必要的焦虑,让人们在不知不觉中被数据所“绑架”。
2025-07-29 04:40
加载更多