点击右上角微信好友

朋友圈

请使用浏览器分享功能进行分享

正在阅读:带你认识CCD、EMCCD、CMOS和sCMOS
首页> 科普频道> 天文前沿 > 正文

带你认识CCD、EMCCD、CMOS和sCMOS

来源:光明网2021-11-26 15:44

调查问题加载中,请稍候。
若长时间无响应,请刷新本页面

  CCD的诞生与工作原理

  电荷耦合器件(Charge-coupled Device, CCD)是由贝尔实验室的威拉德·波伊尔和乔治·史密斯发明的。CCD是一种在光电效应基础上发展起来的半导体光电器件,自20世纪70年代后期开始广泛应用于天文观测,相较照相底片和光电倍增管,它具有量子效率高、动态范围大、线性好等优点。

带你认识CCD、EMCCD、CMOS和sCMOS

图1. CCD的发明人威拉德·波伊尔(左)和乔治·史密斯(右),二人因此工作获得2009年诺贝尔物理学[1]

  CCD的工作过程主要包括:电荷产生、电荷收集、电荷包转移和电荷包测量。光子入射到CCD上激发光电子,光电子被收集在一起形成电荷包,电荷包依次从一个像素转移到另一个像素,最终传输到输出端,完成对电荷包的测量,如图2所示[2]

带你认识CCD、EMCCD、CMOS和sCMOS

图2. CCD的工作过程:电荷产生、电荷收集、电荷包转移和电荷包测量[2]

  CCD的分类

  CCD种类有很多,天文观测中常用的有全帧CCD (Full-Frame CCD, FFCCD),电子倍增CCD (Electron-Multiplying CCD, EMCCD)等。

  全帧CCD具有高密度像素阵列,能够产生高分辨率的数字图像。全帧CCD在读取时,积累的电荷必须首先垂直转移到下一行,由串行读出寄存器水平读出每个像素,重复上述步骤,直至全部转移完毕,这称为“逐行扫描”,如图3所示。由于全帧CCD所有像素都参与感光,因此在电荷传输时,这些像素将被用于处理电荷传输而不能继续捕捉新的影像。这时如果探测器继续接受光线,就会影响成像质量,所以全帧CCD需要配备机械快门,用于探测器读出过程中遮挡入射光。机械快门的缺点是存在快门效应、故障率高、使用寿命有限等。

带你认识CCD、EMCCD、CMOS和sCMOS

图3. 全帧CCD图像读出过程示意图[4]

  EMCCD主要包括成像区、存储区和输出放大器。不同于全帧CCD,EMCCD在串行读出寄存器和输出放大器之间有数百个增益寄存器,在增益寄存器中分布有倍增电极,作用是加速载流子,高速的电荷会激发更多的载流子,从而实现信号放大,如图4所示[5]

带你认识CCD、EMCCD、CMOS和sCMOS

图4. EMCCD结构示意图[5]

  EMCCD的典型工作模式为感光区按照指定曝光时间积分,待曝光结束后感光区电荷迅速转移到存储区,感光区可立刻进入下一次曝光;与此同时,存储区的电荷从上到下逐行进行转移;在读出过程中电荷转移至增益寄存器进行放大并读出。这种工作模式读出速度快,可以无需机械快门,通常可以每秒获取十几张图像,能够满足一些科学目标对短曝光、快读出的需求。

  在弱光成像时,EMCCD相较CCD具有更高的灵敏度,这是由于EMCCD可以在不增加读出噪声的情况下,通过增益寄存器放大来提高图像的信噪比,而CCD只能通过增加曝光时间提高信噪比;但在观测较亮目标时,EMCCD在信号放大过程中会引入其它噪声,在相同曝光时间下,CCD或许是更好的选择。

  CMOS与sCMOS

  互补金属氧化物半导体(Complementary Metal-Oxide-Semiconductor, CMOS)诞生于20世纪80年代。CMOS图像生成机理同样是光电效应,它的工作过程也包括电荷产生、电荷收集、电荷包转移和电荷包测量。与CCD不同的是CMOS每个像素都集成了模拟电路,四个过程在一个像素里完成,即每个像素输出的是转换完的电压信号。

带你认识CCD、EMCCD、CMOS和sCMOS

图5. CCD将电荷逐行扫描至输出放大器,然后将其转换为电压信号; CMOS则在像素内将电荷转换为电压信号[6]

  由于结构上的差异,传统CMOS相机与CCD相机相比噪声高、填充因子低、量子效率低、动态范围小等,所以没有被广泛应用于专业天文观测。上世纪90年代末,随着手机摄像功能的开发,以及手机行业的快速发展,CMOS技术发展迅速,CMOS缺点得到了有效改善。2009年出现了科学级CMOS(scientific CMOS, sCMOS)技术,该技术基于CMOS的架构,通过片上相关多采样来降低噪声、调整半导体掺杂比例等提高像素满阱容量、大小增益双路读出合成高动态范围图像技术提高动态范围、二维无缝拼接技术实现大靶面等,克服了CMOS的一些缺点,实现了低噪声、高帧频、高动态范围、高分辨率、大靶面等。sCMOS作为CMOS一种类型,主要应用于科研领域。

  CMOS应用电子快门,如卷帘快门和全局快门。对于卷帘快门来说,图像是逐行读出的,这与机械快门很像,在拍摄快速移动的物体时会出现斜坡图像、晃动等现象。全局快门像素在曝光时间积累电荷,曝光结束后所有像素同时重置、同时传输到存储区域并读出,所以拍摄快速移动物体没有变形。相比全局快门像素,卷帘快门像素读出噪声低、读出速度快,适合拍摄与相机相对静止或者一些要求低噪声和高帧频的目标图像;全局快门像素则更适合拍摄与相机之间具有相对高速运动的目标图像。电子快门相较机械快门,无需考虑快门效应和快门寿命,在实际使用中可以实现短曝光,同时维护、维修方便。

带你认识CCD、EMCCD、CMOS和sCMOS

图6. 使用卷帘快门在拍摄快速移动物体时会出现变形,全局快门则不会[7]

  目前sCMOS已被广泛应用于生物、物理等科研领域,而CMOS则取代了CCD,成为了民用领域最主要的感光器件。天文专用相机与生活中常见的消费级数码相机差别较大,主要区别有:1. 天文专用相机使用的感光芯片像素较大(较大的像素通常具有较大的满阱电荷)、噪声较低,所以具有较大的动态范围;使用16-bit模拟/数字转换器,可以获得16-bit的数字图像;除此之外,还具有线性好、量子效率高等优点;2.天文专用相机通常需要对感光芯片进行深度制冷,来降低暗电流,芯片需封装在密闭空间里,所以体型较大、结构复杂等;3.天文专用相机需要连接电脑,使用专用控制软件对其设置、拍摄及显示等。

带你认识CCD、EMCCD、CMOS和sCMOS

图7. 左为科学级天文专用相机,右为消费级数码相机(图源:网络)

带你认识CCD、EMCCD、CMOS和sCMOS

图8. 使用天文专用相机拍摄的“梅西耶天体M81和M82”(图源:邱鹏 摄,使用器材:106mm口径望远镜、LRGB滤光片和天文专用制冷 CCD,LRGB四通道总曝光时间约28小时,单次最长曝光时间30分钟)

带你认识CCD、EMCCD、CMOS和sCMOS

图9. 使用数码单反相机拍摄的“沙漠中的银河”(图源:邱鹏 摄,使用器材:数码单反相机,参数设置:焦距14mm、光圈f/2.8、ISO6400、曝光时间30秒)

  小结

  全帧CCD、EMCCD,CMOS和sCMOS作为半导体感光器件,因其结构不同,特点不同。在实际天文观测中,根据观测需求选择合适的探测器,才能事半功倍。

  参考文献:

  [1] http://tech.sina.com.cn/digi/dc/2009-10-09/05373490569.shtml

  [2] James Janesick. Dueling Detectors. SPIE, 2002: pp30-33

  [3] C.R Kitchin编著,杨大卫等译,胡景耀等校. 天体物理方法. 原书第四版. 科学出版社,2009,1-23,149-160

  [4] Introduction to CCDs,

  http://spiff.rit.edu/classes/ast613/lectures/ccds_kids/ccds_kids.html

  [5] What is an Electron Multiplying CCD (EMCCD) Camera,

  https://andor.oxinst.com/learning/view/article/electron-multiplying-ccd-cameras

  [6] Dave Litwiller, Dalsa. CMOS vs. CCD: Maturing Technologies, Maturing Markets. Phoeonics Spectra. 2005

  [7] Rolling shutter VS Global shutter,

  https://www.premiumbeat.com/blog/know-the-basics-of-global-shutter-vs-rolling-shutter/

  作者简介:邱鹏,中国科学院国家天文台工程师,主要从事科学级天文探测器性能检测与应用、天文望远镜控制、天文技术与方法研究。

  文稿编辑:赵宇豪

[ 责编:蔡琳 ]
阅读剩余全文(

相关阅读

您此时的心情

光明云投
新闻表情排行 /
  • 开心
     
    0
  • 难过
     
    0
  • 点赞
     
    0
  • 飘过
     
    0

视觉焦点

  • 数读我国全面推进严格规范公正文明网络执法成绩单

  • 中国体操队备战巴黎奥运会

独家策划

推荐阅读
在一项新研究中,美国俄亥俄州立大学神经科学家培育出一种特殊类型的人类白血细胞,能促进神经纤维再生。他们的最终目标是开发出利用这些特殊细胞的治疗方法,逆转视神经、大脑和脊髓损伤,恢复患者失去的神经功能。
2024-06-28 10:47
本报记者 余晓葵摄/光明图片  6月25日,与会嘉宾在交流讨论。 世界经济论坛公布的最新一批全球153座“灯塔工厂”中,有62家是中国企业,其中不乏光伏、新能源汽车等高科技企业。
2024-06-28 10:25
记者陈海波、通讯员王玉琢从中国计量科学研究院(以下简称“中国计量院”)获悉,国际计量局(BIPM)官网日前发布北斗授时监测结果,标志着基于北斗的授时服务获国际认可,可以为全球提供精准可信的标准时间服务。 作为BIPM指定的国内唯一一家北斗授时监测机构,中国计量院是此次北斗授时监测数据的主要来源之一。
2024-06-28 10:23
育秧、移栽是人们常见的水稻栽培方式,而将稻种直接播入大田进行水稻直播,是近年来一种轻简化的栽培方式,但也存在出苗率较低的问题。 研究表明,水稻中胚轴伸长对幼苗破土出苗具有关键作用,是提供其迅速破土的主要动力。
2024-06-28 10:19
在24日召开的全国科技大会、国家科学技术奖励大会和中国科学院第二十一次院士大会、中国工程院第十七次院士大会上,习近平总书记强调,要深入践行构建人类命运共同体理念,推动科技开放合作。
2024-06-28 10:14
Open-ST平台为研究提供了前所未有的精度。
2024-06-27 10:33
25日至26日,以“空间智能 新质引擎”为主题的2024空间智能软件技术大会在北京举行。
2024-06-27 10:31
26日,全球首列用于商业化运营的碳纤维地铁列车“CETROVO 1.0 碳星快轨”,在青岛正式发布。
2024-06-27 10:30
如何统筹产业发展与生态保护,贵安新区数据中心集群积极探索,走出一条绿色节能低碳之路。
2024-06-27 10:29
OpenAI当天发表声明说,原计划6月底向ChatGPT付费用户小范围开放语音助手功能,但现在认定仍需一个月才能“达到发布门槛”。
2024-06-27 10:25
6月24日,中国农业科学院生物技术研究所作物高光效功能基因组创新团队,揭示了位于水稻籽粒细胞内的河马信号通路联合介体激酶模块调控水稻籽粒大小的新机制。
2024-06-26 10:35
瑞典斯德哥尔摩大学研究团队报告称,韦布望远镜的数据揭示了5个星团,每个大小约1秒差距(约3.26光年)。研究团队总结说,这些发现表明星团形成和反馈可能塑造了再电离时期的星系特性。
2024-06-26 10:34
6月25日,嫦娥六号安全回家。中国电科为嫦娥六号配备了系列测控及卫星通信手段和搜索定向设备等,为“嫦娥”旅途安全和月球样本安全保驾护航。
2024-06-26 10:30
6月24日上午,全国科技大会、国家科学技术奖励大会和中国科学院第二十一次院士大会、中国工程院第十七次院士大会在人民大会堂隆重召开。
2024-06-26 10:28
嫦娥六号在人类历史上首次实现月球背面采样返回,是我国建设航天强国、科技强国取得的又一标志性成果。
2024-06-26 10:27
加载更多