点击右上角微信好友

朋友圈

请使用浏览器分享功能进行分享

正在阅读:给近邻星系做“全面体检”——积分视场光谱巡天项目MaNGA简介
首页> 科普频道> 天文前沿 > 正文

给近邻星系做“全面体检”——积分视场光谱巡天项目MaNGA简介

来源:光明网2021-12-22 10:45

调查问题加载中,请稍候。
若长时间无响应,请刷新本页面

  浩瀚的宇宙中,分布着数以亿计的星系,它们形态各异,有着各自独特的生命轨迹。有的星系在漫长的时光中呼朋引伴,多次与其他星系合并融合而形成更大质量的星系;有的星系在历经沧桑后投入星系群或者星系团大家庭的怀抱;有的星系则踽踽独行,在独属于自己的角落感受岁月变迁。星系的不同演化路径对于星系最终呈现的性质有着深远影响,因此通过对星系现今性质的分析,能够帮助理解星系形成与演化的过程。

  与最初利用单色图像或者多色成像研究星系性质相比,光谱提供了更为丰富的信息,通过光谱分析可以得到星系的诸如恒星年龄、恒星形成率、化学丰度、气体组分、速度、速度弥散等一系列性质。2000年开始的斯隆数字化巡天项目(Sloan Digital Sky Survey,简称SDSS)提供了近邻宇宙上百万个星系的光学光谱,对于星系性质的系统性研究提供了大样本数据。

  但是,SDSS所提供的是单光纤光谱数据,单光纤光谱是指将望远镜对准星系的中心区域并通过单根光纤把望远镜收集到的星光传输到光谱仪上进行色散得到的光谱,因此SDSS光谱所提取出来的信息反映的仅仅是星系中心区域的性质(见图1)。我们知道,星系是内外不同的结构组成的,从最中心的超大质量黑洞和由超大质量黑洞驱动的活动星系核,到接近中心的核球和棒,再到外围的盘及旋臂,不同的结构有着不同的星族成分和动力学性质。正所谓“管中窥豹,只见一斑”,如果只有星系中心区域的光谱,那么对于星系的研究如同盲人摸象,得到的结论将是不全面的。

给近邻星系做“全面体检”——积分视场光谱巡天项目MaNGA简介

图1. MaNGA星系11835-12705的SDSS图像,左图中红色方块表示SDSS单光纤光谱区域,星系的大部分区域没有相应的光谱信息,右图中正六边形为MaNGA视场范围,覆盖了星系的大部分区域(图源:SDSS网站)

  为了能够全面了解单个星系不同区域的性质,在斯隆数字化巡天第四期(SDSS-IV)中,MaNGA(Mapping Nearby Galaxies at APO)项目利用积分视场光谱(Integral Field Spectroscopy)的观测技术对一万个近邻星系进行了观测(见图2)。积分视场光谱在二维的视场里对每一个成像单元都获得对应的一维光谱信息,相当于在图像信息的基础上直接增加了一个波长维度的信息,得到所谓的数据立方。数据立方提供了一维光谱的空间分布信息,进而提供了由光谱分析得到的星族成分及动力学性质的空间分布(见图3)。与以往的SDSS单光纤光谱相比,积分视场光谱既能覆盖更大的空间范围,又能区分星系不同区域的性质差异,得到更加丰富的信息。以图3为例,展示了MaNGA积分视场光谱得到的星系性质二维分布,如果从SDSS单光纤光谱来分析这个星系,看到的仅仅是恒星形成率较高、恒星年龄较老的中心区域,既看不到在外围旋臂上分布的高恒星形成率区域,也看不到外围较为年轻的星族,对于理解星系恒星形成过程有所限制。如果说SDSS的大样本单光纤光谱巡天是从宏观角度对近邻星系的“健康状况普查”,那么MaNGA的积分视场光谱则是在微观角度对近邻星系的代表进行了“全面体检”,后者从另外一个视角大大加深人们对于星系形成演化的理解。

给近邻星系做“全面体检”——积分视场光谱巡天项目MaNGA简介

图2. 左图是MaNGA积分视场光谱示意图,下方是由多根光纤组成的光纤束,一个光纤束可以同时得到一个星系不同区域的光谱;右图展示MaNGA视场覆盖的范围,每个圆圈对应一根光纤的位置(图源:MaNGA官网)

给近邻星系做“全面体检”——积分视场光谱巡天项目MaNGA简介

图3. MaNGA积分视场光谱得到的星系性质分布。从左往右分别为SDSS图像(图中紫色六边形代表MaNGA的视场)、Hα辐射(反映恒星形成率)、气体速度、恒星速度、D4000(反映恒星年龄)(图源:MaNGA官网)

  MaNGA项目为期6年(2014-2020),利用位于阿帕奇山顶天文台的2.5米望远镜对近邻宇宙(平均红移0.03)大约10000个星系进行了积分视场光谱的观测。MaNGA星系样本的恒星质量大约在109太阳质量到1012太阳质量之间呈均匀分布,没有对星系倾角、所处环境、星系形态等性质做筛选,因此MaNGA的星系样本能够接近无偏的代表近邻星系。同时,MaNGA的视场覆盖了样本星系至少1.5倍的半光度半径的范围,其中三分之一的星系能达到2.5倍的半光度半径,能够对星系大部分区域进行光谱分析。与其他较早或者同期的积分视场光谱项目(SAURON、ATLAS3D、CALIFA、SAMI等)相比,MaNGA的星系样本数大大增加,从72(SAURON)、260(ATLAS3D)、600(CALIFA)、3000(SAMI)增加到10000,意味着MaNGA不但能够准确全面地刻画每一个星系的性质,也能提供足够多的样本进行统计性分析。

  在日常生活中,体重的测量是体检里一个必不可少的项目,对于星系同样如此甚至更加重要,用MaNGA对近邻星系做“全面体检”自然也少不了星系的“体重增长”这一项目。MaNGA巡天项目的一个重要结果是对星系中恒星形成历史及其“熄灭”机制的研究。所谓恒星形成历史指的是星系中恒星形成速率随时间的变化,当星系中有大量冷气体时,质量超过金斯质量的气体团块就会坍缩形成恒星,这时星系通过大量新恒星的形成处于质量快速增长的阶段;当星系中的冷气体逐渐消耗,恒星形成率就会降低甚至停止,成为一个几乎没有恒星形成的“熄灭”星系。恒星作为星系的基本组成成分,恒星形成历史很大程度上反映了星系的“体重增长史”,尽管星系的“体重增长”还可以通过合并其他星系的方式,研究恒星形成历史及其“熄灭”机制仍然是理解星系演化的重要环节。

  许多机制能够降低星系的恒星形成率乃至使其“熄灭”,主要原理是通过影响星系内冷气体的含量来调节恒星形成率,冷气体作为“食物”提供了星系“体重增长”的物质来源,当“食物”不足时星系的“体重增长”就会逐渐变缓乃至停止。目前星系的“熄灭”机制主要分为“自内向外”(inside-out)和“自外向内”(outside-in)两种模式,“自内向外”熄灭机制包括活动星系核的反馈作用移除星系中心气体、核球质量增长消耗星系中心气体等等,“自外向内”熄灭机制包括星系受到其他星系的潮汐剥离而失去气体,星系在介质中运动时因为冲压剥离(ram pressure)作用下失去外围气体、星系无法吸积冷气体“窒息而亡”(strangulation)等等。可以说,星系“控制体重”的两个方式是“少吃”(不从外界补充冷气体)和“多动”(通过气体外流或者剥离作用移除自身已有的冷气体)。通过MaNGA积分视场光谱得到的D4000径向分布,可以发现大部分MaNGA星系中心的恒星年龄更老,处于“自内向外”的“熄灭”过程(见图4)。

给近邻星系做“全面体检”——积分视场光谱巡天项目MaNGA简介

图4. MaNGA星系中D4000的分布反映了星系“自内向外”的熄灭机制。左图是D4000径向梯度和中心D4000的关系,右图是1.5倍半光度半径处D4000和中心D4000的关系。蓝色的点代表有大量恒星形成的星系,绿色的点代表部分区域恒星形成停止的星系,红色的点代表完全“熄灭”的星系。(图源:Wang et al. 2018)

  MaNGA项目的另一个研究亮点是对星系内部运动的观测,在SDSS前期的观测中,星系的内部运动信息仅通过一根光纤拍摄的光谱获得,观测者只能获得星系内部恒星随机运动的信息,却无法了解星系内部恒星整体转动的信息。而在MaNGA项目中,观测者可以获得一个星系在不同位置处的视向速度,从而全面了解星系的内部运动(见图5)。利用这些观测数据,科学家就可以计算星系内部的引力是如何分布的,进而了解星系的物质构成,了解星系内部发光的恒星和不发光的暗物质在空间上的分布状况【5】。

给近邻星系做“全面体检”——积分视场光谱巡天项目MaNGA简介

图5. 三个MaNGA星系的图像(左)、恒星速度(中)和恒星速度弥散(右)。(图源:SDSS Marvin)

  MaNGA项目的观测已于2020年落下帷幕,它的所有数据也于2021年12月向全世界全面开放。在过去六年的时间里,MaNGA在研究星系的形成与演化方面取得了丰硕的成果,这其中,来自中国科研机构(包括国家天文台、清华大学、上海天文台、南京大学等在内)的研究者们做出了重要的贡献,承担了其中三分之一的课题。虽然MaNGA项目已经结束,但是它所留下的数据仍然有着巨大的潜力,我们期待着全世界的天文学家们在其中挖掘出更多的宝藏,加深我们对星系形成与演化的理解。

  参考资料:

  【1】https://www.sdss.org/surveys/manga

  【2】Bundy, K. et al. 2015, ApJ ,798,7

  【3】https://arxiv.org/abs/2112.02026

  【4】Wang, Enci et al. 2018, ApJ,856,137

  【5】Li, Ran et al. 2019, 490, 2124

  作者简介:朱凯,中国科学院国家天文台在读博士生,主要研究方向为利用积分视场光谱数据对星系进行动力学及星族性质的研究。

  文稿编辑:赵宇豪

[ 责编:蔡琳 ]
阅读剩余全文(

相关阅读

您此时的心情

光明云投
新闻表情排行 /
  • 开心
     
    0
  • 难过
     
    0
  • 点赞
     
    0
  • 飘过
     
    0

视觉焦点

  • 喜迎新年

  • 奋力冲刺“全年红”

独家策划

推荐阅读
2024年,中国制造业顶压前行、向新向优,制造强国发展指数与德国和日本处于同一区间,进入全球制造强国第二阵列,成为继美国、德国、日本后第四个迈入全球制造强国行列的国家。
2025-12-31 08:56
突破性成果勾勒出我国高水平科技自立自强的清晰轨迹。
2025-12-31 08:58
“预计元旦期间,我国大部地区降水较弱,但中东部将出现显著降温,南方地区湿冷感明显。
2025-12-31 09:12
12月30日,中国气象局召开新闻发布会,专题发布《全球气象发展报告2025》(以下简称《报告》),呈现2024年全球气象发展态势。
2025-12-31 09:04
北斗三号全球卫星导航系统组网阶段的主要目标是把卫星建好,运行阶段的主要目标则是管好、用好。
2025-12-31 09:03
光明日报北京12月29日电 记者姚亚奇29日从国家林草局获悉,“十四五”期间,我国采取有力措施,加快推进林草种苗振兴,收集保存林草种质资源14.74万份,较“十三五”末增长180%,我国重要乡土树种草种和珍稀濒危林草种质资源得到有效保护。
2025-12-30 09:23
由自然资源部南海生态中心联合相关单位共同编制的《黄岩岛珊瑚礁生态调查报告》29日在京发布。报告基于船舶走航、潜水调查、卫星航空遥感、原位观测等方式,结合历史数据分析,对黄岩岛珊瑚礁生态状况进行了调查评估。
2025-12-30 09:23
松花江畔,风机和光伏正齐齐出力,一端是新能源电力源源不断产出;另一端,化工装置稳定运行,“绿色石油”涌流而出。
2025-12-30 09:37
执行中国第42次南极考察任务的“雪龙”号极地科考破冰船于北京时间29日顺利抵达秦岭站海域,并开展卸货作业。
2025-12-30 09:32
研究人员在火星发现了适合人类探索的浅层水冰的痕迹。研究团队借助高分辨率轨道影像,对火星地貌进行了研究,并在中纬度的亚马孙平原发现了埋藏深度不足1米的冰痕迹。易获取的冰能够让宇航员在火星长期生存与工作期间,制备饮用水、可呼吸的氧气、燃料及其他必需品。
2025-12-30 09:27
截至12月28日,新疆油田2025年二氧化碳注入量突破100万吨,成为我国首个实现年注碳百万吨的油田。”新疆油田公司执行董事、党委书记石道涵介绍,油田年注碳量从2022年的12.6万吨跃升至2025年的100万吨,已累计注入二氧化碳超200万吨。
2025-12-30 09:26
12月26日,我国首个覆盖6种轮状病毒血清型的六价轮状病毒疫苗在湖北武汉完成首剂接种。
2025-12-29 10:23
美国哈佛—史密森尼天体物理中心天文学家利用美国国家航空航天局(NASA)的哈勃空间望远镜,首次观测到围绕年轻恒星运行的迄今最大原行星盘——IRAS 23077+6707。
2025-12-29 10:10
2025年12月27日0时07分,我国在西昌卫星发射中心用长征三号乙运载火箭成功发射风云四号C星(03星),卫星顺利进入预定轨道,发射任务取得圆满成功。
2025-12-29 10:07
中国科学院空天信息创新研究院研究员王振友团队联合四川省文物考古研究院等机构的科研人员,自主研制了显微时间门控拉曼光谱仪,并利用该仪器对三星堆出土的4块象牙碎片进行无损检测,揭示了象牙在长期地质作用下的老化过程。
2025-12-29 10:01
近期,工信部发布《场景化、图谱化推进重点行业数字化转型的参考指引(2025版)》,聚焦14个重点行业,绘制企业数字化转型“场景导航图。
2025-12-29 09:59
当日,石景山区AI for Science平台正式上线,该平台由枫清科技携手火山引擎联合打造,以AI驱动科研机构与企业的科研效率革新,降低科研门槛。
2025-12-27 20:21
记者25日从国防科技大学获悉,该校磁浮团队近日在磁悬浮试验中,成功在两秒内将吨级试验车加速至700公里/小时。测试速度打破了同类型平台全球纪录,成为全球最快的超导电动磁悬浮试验速度。
2025-12-26 10:08
12月24日,中国科学院重大科技基础设施“载人潜水器与海上作业母船”用户委员会2025年度会议披露:我国“深海勇士”号、“奋斗者”号、“蛟龙”号三大载人潜水器全年完成314次深潜,累计下潜总量达1746次,2026年将向2000次目标稳步迈进。
2025-12-26 10:05
日前,国家自然科学基金委员会在北京召开国家自然科学基金首批重大非共识项目遴选会议,标志着重大非共识项目正式启动试点。国家自然科学基金委员会将深入实施并持续优化重大非共识项目遴选机制,引导广大科研人员聚焦高水平原创性科研工作狠下功夫。
2025-12-26 09:59
加载更多