点击右上角微信好友

朋友圈

请使用浏览器分享功能进行分享

正在阅读:“金环日食”奇观上演 来看看日食背后那些秘密②
首页> 科普频道> 天文前沿 > 正文

“金环日食”奇观上演 来看看日食背后那些秘密②

来源:光明网2019-12-30 18:27

调查问题加载中,请稍候。
若长时间无响应,请刷新本页面

  上一篇我们带大家了解了日食的成因,以及我国对于日食的早期记载,神奇的日食,是大自然赠予我们的礼物,今天我们继续开启日食知识之旅~

  日食名词

  根据月面遮盖日面程度的不同,日食有不同的分类。整个过程中,月面中心与日面中心最为靠近的时候:

  月面能够完整地把整个日面遮住,就叫做日全食。

  月面边缘全部进入日面轮廓内,但还留有一圈日面的圆环,就叫做日环食。

  日全食与日环食统称为“中心食”。

  月面边缘没有全部进入到日面轮廓里,就叫做日偏食。日全食与日环食的过程中,一定会发生日偏食。但日偏食发生时未必会出现日环食、日全食。

  除此之外,还有一种极为罕见的日食,在其核心食带的两端,看到的是日环食。在核心食带的中间部分,看到的则是日全食。这种日食一般被称为“全环食”或“混合食”。

“金环日食”奇观上演 来看看日食背后那些秘密②

  图1 日食的种类(距离与大小不依实际比例)。A 本影区出现日全食。日全食发生时,太阳视直径略小于月球视直径;B 伪本影区出现日环食。日环食发生时,太阳视直径略大于月球视直径;C 半影区出现日偏食 图片来源:维基百科

  类似的情况,当地球运行到月亮和太阳连线上时,地球的影子投到月亮上,就会发生月食。由于篇幅有限,本文就不再对月食做太多分析了。

  日食食分

  以日食为例,日偏食或中心食偏食阶段的食分,是指太阳被月球遮蔽的角直径与太阳的角直径与之比。中心食食甚阶段的食分,是指月球角直径与太阳角直径之比。

  日偏食或中心食的偏食阶段,食分大于0小于1。

  日环食食甚时的食分,接近1但小于1。

  日全食食甚时,食分大于等于1。

“金环日食”奇观上演 来看看日食背后那些秘密②

  图2 日食的食分示意图 图片来源:www.timeanddate.com

  很多公众媒体在进行日食的报道时,会提及食分的数值,但不会提及定义。因此很多人会把日食食分当做日面被月球遮盖的面积率。实际上这是错误的。以刚刚过去的这次(2019年12月26日)的日环食为例,北京仅能看到日偏食,食分约为0.15,实际上食甚时的遮盖面积仅为大约6.8%。

  日环食与日全食

  在我们的日常语汇当中,日全食被提及的频率往往会比日环食要高。因此很多人会以为日环食是日全食的一种特殊情况,且日环食会比日全食更为罕见。实际上,这也是完全错误的观念。

  首先,从日食分类来说,日环食与日全食统称为“中心食”,但两者被认为是不同类型的日食。

  其次,根据对公元前1999年至公元3000年这五千年当中的日食发生次数的统计(见表1),日环食发生的几率,比日全食还要高一些!

“金环日食”奇观上演 来看看日食背后那些秘密②

  表1 公元前1999年至公元3000年日食统计表 数据来源:NASA’s Goddard Space Flight Center Eclipse Web Site, Fred Espenak

  日食与月相

  在笔者的科普工作经历当中,有太多的公众将日月食的成因与月相变化的原因混为一谈,认为月亮的阴晴圆缺是由于地球的遮挡所造成的。诚然,这两者都是在一个圆面上产生的形状变化,但只要将两者进行简单的对比,就可以发现很明显的不同之处。月相变化显然不是由于某个球形实体遮挡而形成的。

“金环日食”奇观上演 来看看日食背后那些秘密②

  图3 日环食期间的日面变化过程 拍摄&制图:孙思

“金环日食”奇观上演 来看看日食背后那些秘密②

  图4 月相变化过程图 素材来源:Ernie Wright,Scientific Visualization Studio 制图:克留

  我们知道,平面上两个圆形的位置关系有相离、外切、相交、内切、内含五种情况。我们如果将太阳与月球这两个球体投影为圆形,就可以用圆与圆的位置关系来帮助理解日食过程中的重要时间节点。

“金环日食”奇观上演 来看看日食背后那些秘密②

  图5 平面上的圆与圆的位置关系示意图 图片来源:《义务教育教科书:数学(九年级上册)》人民教育出版社2013年版,第103页

  以中心食的核心食带为例,当日面与月面两个圆形:

  1、第一次外切时,这个时刻叫做“初亏”。日面有一个边缘即将开始被遮挡。这是日食的开始。

  2、第一次相交的时间过程,叫做“日偏食”或“偏食阶段”

  3、第一次内切时,如果是日全食,这个时刻叫做“食既”。这时日面完全被月面遮挡住,天空仿佛突然黑了下来。如果是日环食,这个时刻叫做“环食始”。这时月面完全进入到日面范围内,太阳即将会变成出一轮明亮的光环。

  4、当月面中心与日面中心最接近的时刻,叫做“食甚”。如果是日全食,太阳这时会变得最黑。如果是日环食,这时的太阳就变成了一个非常完美的圆形光环。

  5、第二次内切时,如果是日全食,这个时刻叫做“生光”,日面边缘即将开始变亮。如果是日环食,这个时刻叫做“环食终”,能够看到月面即将开始移出日面的范围内。

  6、第二次相交的时间过程,叫做“日偏食”或“偏食阶段”

  7、第二次外切时,这个时刻叫做“复圆”。日面完全恢复圆形。日食结束。

  对于日全食来说,“食既”之前与“生光”之后,都有一瞬间,日面的边缘处有一个点会特别明亮,就像一颗璀璨的明珠,这个现象被称为“贝利珠”。

  对于最多只能看到日偏食的情形,则全程只有“初亏”“食甚”“复圆”三个节点。

“金环日食”奇观上演 来看看日食背后那些秘密②

  表2 日面与月面两个圆形位置关系示意

  日环食和日全食关键阶段图片为作者利用Stellarium 0.19.2软件演示截图,两张贝利珠图片由王乐天提供(2009年7月22日拍摄于宜昌市)

“金环日食”奇观上演 来看看日食背后那些秘密②

  图6 2019年12月26日阿联酋·阿布扎比的日环食 摄影:杨勇

  日食规律

  人类很早就开始注意到了日食的出现会有一些规律。除了“日食则朔,月食则望”,还不难发现一个有趣的规律。以2019年和2020年的日食与月食情况举例,对两年内发生的日食(或月食)最大食时刻进行了统计(表3)。

“金环日食”奇观上演 来看看日食背后那些秘密②

  表3 2019年与2020年日食与月食最大食时刻统计表(格林尼治标准时)

  最大食时刻:对于日食即指日食食分最大的时刻,对于月食即指地球影锥轴线最接近月球中心的时刻。

  数据来源:NASA’s Goddard Space Flight Center Eclipse Web Site

  表中统计直观地展示了“大多数日食与月食是成对出现的”这个规律。如果我们再进一步关注它们的发生时刻,则不难发现每一对日食与月食之间的间隔大约是在14或15天左右。对以上五对日月食时间间隔做简单的平均值计算,结果大约是14.844天。而一个朔望月(指月球连续两次合朔的平均时间间隔)的周期大约是29.53天,29.53÷2=14.765天。如果我们将上图的样本扩大,每一对日食与月食的平均时间间隔一定会更接近14.765天这个数字。也就是说,在一个朔望月当中,如果出现了日食(或月食),那么半个朔望月后,很大概率将会发生月食(或日食)。当然,这个规律显得不是那么保险。这是因为日-地-月三者位置关系还需要在空间当中进行考虑,这远远要比以上我们提及的这几个周期要复杂得多。

  沙罗周期

  除了以上这个显而易见又略显粗糙的规律,古巴比伦天文学家还发现了一个关于日食月食的更加复杂的周期性规律。即223个朔望月≈242个交点月≈239个近点月,这个时间长度大约是18年11天又8小时,这就是沙罗周期。其中,交点月为月球连续两次黄道升交点(或降交点)的平均时间间隔,约为27.21天;近点月为月球连续两次经过近地点的平均时间间隔,约为27.55天。

  这意味着,每经过一个沙罗周期,月球所经历的朔望月、交点月和近点月几乎都是整数,地球、太阳和月球三者的几何关系几乎完全一样:月球在相同的交点上,有着相同的相位和与地球相同的距离。知道在某一天曾经发生一次食,则经过一个沙罗周期之际,几乎一样的日食或月食将再度发生。刚刚发生的这一次日环食(2019年12月26日)属于第132号沙罗序列。这个序列的下一次日食将会发生在2038年1月5日。

“金环日食”奇观上演 来看看日食背后那些秘密②

  图7 136号沙罗周期的九次日食带示意图

  图片来源:NASA’s Goddard Space Flight Center Eclipse Web Site

  制图:Michael Zeiler, Xavier Jubier, Fred Espenak, NASA Goddard Space Flight Center

  同一沙罗周期的日食,太阳、地球、月球的相对位置基本一样,因此食带形状看起来都很相像。但由于地球自转的因素,使得每次食带的具体位置有所移动。

  日食计算与预测

  根据沙罗周期进行运算,属于同一序列的日食在同一地点连续发生两次的最短间隔,至少需要经过三个沙罗周期,也就是大约54年33天。由于中心食的关注度明显要高于日偏食。因此,当我们实际考察某地连续两次发生中心食的时间间隔时,就会发现实际情况要比这复杂得多。

  以北京为例,在1802年8月28日15:46:38发生了一次日环食食甚后,下一次日食中心食将发生在2035年9月2日08:33:25,这是一次日全食。这中间竟然间隔了233年61天16小时52分30秒。在中国近现代史上最为激荡的20世纪这一百年中,采用美国国家航空航天局戈达德空间飞行中心日食月食网站(NASA Goddard Space Flight Center Eclipse Web Site)的计算器进行推算,北京地区(坐标采用东经116°25′,北纬39°55′计算)竟然一场日食中心食都看不到。这对于北京地区(未考虑北京行政区域在不断扩大)的天文工作者和爱好者来说,真的是非常遗憾!

  而在下个世纪,2118年3月22日和2124年5月14日,北京就会先后有一次日环食和日全食,间隔仅有6年多!因此,单纯笼统地说每隔多久,同一个地点就会出现一次日食中心食,是很不严谨的说法。这也是很多公众媒体在进行报道时常见的误导。

  总之,日食月食的计算与预测,是一个非常复杂的数学问题。过程中需要考虑到非常多的修正值。以上引用的一些常量(如朔望月长度),仅仅只是一个时期之内测量出的统计值。以上展示的原理,也仅仅只是最基本的一些思路。有兴趣的读者可以根据公开的天文数据做更精确的运算,说不定可以发现一些更有趣的规律。

  未完待续

  作者简介

  克留:天津科普作家协会理事,北京天文学会会员,国家天文台沙河科普基地教师。

[ 责编:蔡琳 ]
阅读剩余全文(

相关阅读

您此时的心情

光明云投
新闻表情排行 /
  • 开心
     
    0
  • 难过
     
    0
  • 点赞
     
    0
  • 飘过
     
    0

视觉焦点

  • 海南商业航天发射场 双工位合练备首发

  • 守护毛泽东旧居的藏族汉子

独家策划

推荐阅读
大位移井技术是有效开发动用海上边际油田储量的利器,采用大位移井技术可节省40%左右的投资费用,这使得一些油田重新具备了开采的价值,该技术可扩增南海东部边际油田储量超5000万吨。
2024-07-01 09:40
先后生长测量了1000多个样品、一步步提高样品质量,2012年底,薛其坤团队终于成功在实验中观测到量子反常霍尔效应。
2024-07-01 09:39
清晨,太阳从海平面上缓缓升起,一艘蓝白相间的船舶热闹了起来。一个重达2.5吨的ROV(无人揽控潜水器)基础平台从艉甲板被缓缓吊起、布放入水,展开测试工作。
2024-06-30 04:10
6月30日,举世瞩目的粤港澳大湾区超级工程深中通道,正式通车试运营。深圳至中山的车程从此前的约2小时缩短至30分钟。
2024-07-01 06:10
7年前,我脱下博士服,穿上蓝色工装,成为新松公司一名研发人员。这些年,怀着“让新松工业机器人技术水平赶超国外,实现国产机器人核心控制器自研自产”的目标,我全力以赴攻克工业机器人控制器创新研发高地,助力新松工业机器人在国际市场的角逐中,擦亮“中国‘智’造”的牌匾。
2024-07-01 06:20
建设科技强国,向什么要动力?改革,唯有改革!党的十八大以来,以习近平同志为核心的党中央对科技体制改革作出一系列重要战略部署,指引和推动科技体制改革持续深化。
2024-07-01 06:05
在一项新研究中,美国俄亥俄州立大学神经科学家培育出一种特殊类型的人类白血细胞,能促进神经纤维再生。他们的最终目标是开发出利用这些特殊细胞的治疗方法,逆转视神经、大脑和脊髓损伤,恢复患者失去的神经功能。
2024-06-28 10:47
本报记者 余晓葵摄/光明图片  6月25日,与会嘉宾在交流讨论。 世界经济论坛公布的最新一批全球153座“灯塔工厂”中,有62家是中国企业,其中不乏光伏、新能源汽车等高科技企业。
2024-06-28 10:25
记者陈海波、通讯员王玉琢从中国计量科学研究院(以下简称“中国计量院”)获悉,国际计量局(BIPM)官网日前发布北斗授时监测结果,标志着基于北斗的授时服务获国际认可,可以为全球提供精准可信的标准时间服务。 作为BIPM指定的国内唯一一家北斗授时监测机构,中国计量院是此次北斗授时监测数据的主要来源之一。
2024-06-28 10:23
育秧、移栽是人们常见的水稻栽培方式,而将稻种直接播入大田进行水稻直播,是近年来一种轻简化的栽培方式,但也存在出苗率较低的问题。 研究表明,水稻中胚轴伸长对幼苗破土出苗具有关键作用,是提供其迅速破土的主要动力。
2024-06-28 10:19
在24日召开的全国科技大会、国家科学技术奖励大会和中国科学院第二十一次院士大会、中国工程院第十七次院士大会上,习近平总书记强调,要深入践行构建人类命运共同体理念,推动科技开放合作。
2024-06-28 10:14
Open-ST平台为研究提供了前所未有的精度。
2024-06-27 10:33
25日至26日,以“空间智能 新质引擎”为主题的2024空间智能软件技术大会在北京举行。
2024-06-27 10:31
26日,全球首列用于商业化运营的碳纤维地铁列车“CETROVO 1.0 碳星快轨”,在青岛正式发布。
2024-06-27 10:30
如何统筹产业发展与生态保护,贵安新区数据中心集群积极探索,走出一条绿色节能低碳之路。
2024-06-27 10:29
OpenAI当天发表声明说,原计划6月底向ChatGPT付费用户小范围开放语音助手功能,但现在认定仍需一个月才能“达到发布门槛”。
2024-06-27 10:25
加载更多