点击右上角微信好友

朋友圈

请使用浏览器分享功能进行分享

正在阅读:天文学家眼中的星之“尽收眼底”
首页> 科普频道> 天文前沿 > 正文

天文学家眼中的星之“尽收眼底”

来源:光明网2020-09-22 10:12

调查问题加载中,请稍候。
若长时间无响应,请刷新本页面

  天文观测其实分为很多种,我们今天在这里就和大家说说比较容易理解的光学天文观测,天文学家都看到了什么。

  究竟看到了啥

  光学波段的观测,目前采用的基本手段就是用望远镜将星光聚焦到焦面上,然后焦面处的探测器(通常是CCD)对入射的光子进记录。光学观测最常见的两种形式,就是测光观测和光谱观测。

  测光观测虽然会有波段的不同,但基本是一样的。而光谱观测则根据设备的不同分了很多种,例如根据遮光或者采集设备分为狭缝光谱、光纤光谱、无缝光谱,积分场单元等,根据分光(色散)的方式分为一次色散、二次色散等。还有一些其它的观测模式,例如偏振观测等等这里就不多介绍了……

  测光观测

  测光观测,顾名思义,就是测量天上每个位置的光子有多少,也就是有多亮。简单粗暴地说就是和大家日常拍照是一样的。

  但是有一点区别很大,就是测光天文观测时,我们得到的每一幅图像都是单色的。事实上大家的彩色相机,得到的也是三个颜色的单色图像,只不过显示的时候组合起来了而已。天文观测得到的图像,也可以通过染色进行组合,也就是大家所看到的那些彩色的星空照片(往往是近邻星系、星云等)。

  那么测光图像是怎样的呢,图1就是一幅典型的测光图像的局部,在图中可以看到多个亮点,这些就是测光所谓的“点源”,当然它们中的大部分就是恒星。而如同前面展示的仙女星系,可以看到外形和细节,就是所谓的“面源”或者“展源”。

天文学家眼中的星之“尽收眼底”

图1.DS9软件展示的一副典型的测光观测图像(图源:郑捷、江林巧)

  “点源”,从尺度上来说就真是一个点。不管那颗星有多大,经过这么长的距离,到地球上也变成了一个点。图2是用iraf软件绘制的上图中某个点源的流量曲面图。

天文学家眼中的星之“尽收眼底”

图2:IRAF的imexam任务查看的星象(图源:郑捷、江林巧)

  这个模式下看星象,可以直观地看出有点像二维高斯分布(正态分布),事实上还是有很大差异的。而周围的背景,就是所谓的天光背景。从背景的网格能看出来,背景还是有起伏的。

  一般来说我们看图只是目测检查,真正要做分析,还是需要依赖数据计算。

  光斑的形成

  有三个主要原因导致了一个理论上的“点”变成了一个光斑。

  第一个原因,是光经过衍射形成的艾里斑。

  第二个原因,就是大气的扰动,大家平时说“星星会眨眼”。其实就是因为大气扰动引起星象的变动,累积起来,就形成了光斑。这实际上是光斑的主要成因。大家可以自己做个试验,透过蜡烛的火苗,或者煤气灶的火苗,看对面的物体,会发现物体在扭曲飘动,这就是大气的扰动引起的。或者在影视作品中,看飞机发动机后的远处物体,也是这样的。这在天文观测中叫做视宁度(Seeing),代表了观测站的环境质量好坏,是观测站选址的重要因素。

  第三个原因,来自于设备本身。望远镜的镜面和各种光学器件,不可能是数学上的完美曲面,误差在所难免。

  测光数据中的信息

  对这样的一幅测光图像,我们能得到什么信息呢?内行看门道,我们要从图中得到的信息很多。

  首先就是有哪些源,在什么位置,其次是看有多亮。结合不同波段的观测数据,我们可以分析恒星的更多参数。此外还可以进行长时间观测,通过时序观测数据,也能得到很多信息。举个例子来说,现在发现系外行星最多的开普勒卫星,就是利用恒星的光变曲线来发现系外行星的。而目前正在进行的TESS卫星巡天,也是做这个。

  光学天文测光虽然是一个很古老的天文观测形式,从人类抬头仰望星空开始,就是在做测光天文观测。但是不论天文科学发展到什么程度,它会始终是一个重要的观测模式。更多的细节不再赘述,真要是说起来可以写厚厚一本书。

  光谱观测

  那么大家知道测光可以高效地得到大量的信息。但是信息的精度还不够。所以这个时候就需要光谱观测。

  说光谱之前,先得说一下光的色散。我们人眼看到的所谓白光,实际上是复色光。我们可以通过色散器件对白光进行处理,使得不同波长的光分散在不同的空间位置上。

  最典型的人造色散器件,也就是当年牛顿大神据说用过的三棱镜。其实利用的就是不同波长(频率)的光在玻璃中的折射率的不同来实现的。

  当然了,除了人造的设备,还有天然设备——水滴,彩虹、日晕等等都是这么来的。

天文学家眼中的星之“尽收眼底”

图3.典型的三棱镜(图源:网络)

  光谱中蕴含的信息

  那么为啥要做光谱观测呢?因为其中蕴含了天体的更多信息。光谱有时候也被称为天体的“指纹”,每个天体的光谱都是不同的。

  首先,光谱中有所谓的“谱线”存在。一个天体的光被色散之后,我们会看到并不是均匀的,而会有很多信号强弱的变化,就是谱线,变强的部分叫做发射线,而变弱部分的叫做吸收线。

  在光学波段,谱线的形成主要是因为天体的原子(包括离子,以下统称原子)外层电子跃迁对光子的吸收或者发射。每一种元素都有各自特定的能级,所以他们所能吸收或放出的光子是特定的波长的。于是光谱中的谱线就成了标定原子的重要指标。

  图4就是典型的太阳光谱的局部,其中可以看到一系列的暗线(吸收线)。

天文学家眼中的星之“尽收眼底”

图4.太阳光谱局部(图源:网络)

  谱线除了能定性知道元素存在信息之外,还能知道更多的细节,例如恒星中元素的丰度(含量)、质量、自转速度、温度、年龄、视向速度等等。

  通过视向速度我们可以知道很多的事情,例如整个银河系的运动,宇宙膨胀等等,都和这个有关。2019年诺贝尔物理奖获得者中的两位,就是因为在1995年通过视向速度方法证认了人类发现的第一颗围绕主序星运转的太阳系外行星。

  光谱观测的做法

  在望远镜的终端上,如果装上了光谱仪,那么往往会使用光纤或者狭缝去限制一下输入的星光,只拍摄指定的观测目标的光谱。

  但是并不是所有的光谱观测都是单目标的,典型的例子就是上一期提到的郭守敬望远镜,它进行的就是多光纤光谱观测。

  再说一下专业天文观测用的光谱仪,大部分望远镜用的可不是图3中的棱镜,而是光栅等设备,通过光的衍射来实现色散。生活中也有光栅的例子,大家如果手头有光盘,可以斜着用它反射阳光,会看到色散后的样子。

  关于光谱观测,我们先简单说到这里。最后放一张实际观测到的光谱,这是来自我和合作者观测的一颗恒星光谱的局部。图5中可以看到很明显的一系列吸收线。不过这个只是局部,至于光谱图像的全部,不同的光谱设备会有不同的图像,就不展示了。

天文学家眼中的星之“尽收眼底”

图5.一条实际观测得到的恒星光谱局部(图源:郑捷、江林巧)

  简单说这么多,天文学家看到的星,其实和大众看的差异很大,更多反映的是天体的物理本质。如果有兴趣,欢迎来天文学专业就读,或者来参观访问。

  作者简介:郑捷,理学博士,中国科学院国家天文台助理研究员,兴隆观测基地驻站天文学家,主要从事多波段恒星测光巡天观测和数据处理,以及天文软件研发工作。

[ 责编:赵宇豪 ]
阅读剩余全文(

相关阅读

您此时的心情

光明云投
新闻表情排行 /
  • 开心
     
    0
  • 难过
     
    0
  • 点赞
     
    0
  • 飘过
     
    0

视觉焦点

  • 探访京津中关村科技城新貌

  • 江苏泰州:溱湖冬捕年味浓

独家策划

推荐阅读
为揭示东亚古人类的技术智慧与演化脉络提供了关键证据。
2026-01-30 09:37
中国气象局29日发布《2025年中国风能太阳能资源年景公报》。公报显示:2025年,全国风能资源为正常年景,全国太阳能资源总体为偏小年景。
2026-01-30 03:30
想象一下手电筒的光:柔和而四散,照亮着前方。激光,就像一束训练有素的光——所有光粒子步调一致,朝着同一个方向前进,能量高度集中。这种特性让激光能完成普通光做不到的“精细活”,从超市扫码器到医院手术刀,从光纤通信到舞台灯光秀,背后都有它的身影。
2026-01-30 03:30
激光技术被誉为20世纪“四大科技发明”之一。聚焦真空紫外非线性光学晶体材料领域基础研究和关键核心技术,中国科学院新疆理化技术研究所(以下简称“新疆理化所”)潘世烈团队成功研制出氟化硼酸铵(ABF)晶体,首次实现直接倍频真空紫外激光158.9纳米输出,创造了该领域世界最短输出波长纪录。相关成果于29日在国际学术期刊《自然》发表。
2026-01-30 03:30
开慧镇党委书记杨骏介绍,依托科技小院,全镇形成科技养殖示范点5处、示范户24户,带动村民增收1800余万元,并发展起梅花鹿、鹌鹑等特色养殖产业。在博乐市区西南方向四五公里处的荒漠化草原上,科技小院还开辟了200多亩的试验场,将这里作为科研攻关的第一线。
2026-01-30 09:17
科研人员将种子放入冷库储存。例如,千年种子库与中国西南野生生物种质资源库就通过人员交流、技术培训、资源备份、联合研究等,共同推进生物多样性保护。
2026-01-30 09:16
寒冬时节,云南省元江哈尼族彝族傣族自治县龙潭社区番荔枝种植基地里却热火朝天,一颗颗“冬日限定”的番荔枝被采摘、装箱,销往全国各地。
2026-01-30 09:14
“相对拥有百年历史的《科学》,《工程》才走过第一个十年。未来十年,我们要争取与世界顶级刊群比肩。”周济表示,这条路需要时间,以及学术评价观念、出版生态与国际化运营能力的协同推进。
2026-01-29 02:45
工业和信息化部28日公布,2025年,我国通信业实现平稳增长,产业结构持续优化,用户规模实现量质双升,5G、千兆等新型信息基础设施建设加快部署。
2026-01-29 02:55
中国科学院物理研究所近日发布《2025年度REBCO高温超导带材战略研究报告》(以下简称“报告”),这是国际上首份针对高温超导带材发展的系统性战略报告。
2026-01-29 02:55
2025年,山东省实现地区生产总值10.3万亿元,比上年增长5.5%。亮眼的成绩单,离不开创新动能持续发力。齐鲁大地上,科技创新和产业创新融合发展成果正在厚积薄发,新质生产力加速崛起,转型动能持续增强,高水平创新型省份建设的目标正在逐步实现,向着“十五五”征程稳步进发。
2026-01-29 02:45
近期,多家外国科技公司宣布计划将人工智能及数据中心送往太空,引发了科技界的热烈讨论。这一看似在科幻电影中才会发生的场景,已逐步从设想转变为现实。
2026-01-29 02:55
手机厂商将投入更多精力,通过形态变革、差异化外观设计、联名合作等,更好地满足用户的情绪价值需求,激发消费者购买欲望。
2026-01-29 09:02
截至2025年底,全国累计发电装机容量38.9亿千瓦,同比增长16.1%。2025年,风电光伏累计装机历史性超过火电,截至12月底已超出约3亿千瓦。
2026-01-29 09:01
1月27日上午,中国科学院大学星际航行学院揭牌仪式在中国科学院与“两弹一星”纪念馆举行,标志着该学院正式成立。从“东方红一号”划破天际到“祝融号”漫步火星,中国人的航天梦从未停止。
2026-01-28 02:45
2025年,我国区域科技创新布局更加优化,三大国际科技创新中心建设进入新阶段,区域科技创新中心建设取得新成效。
2026-01-28 02:45
打破产业间的壁垒,鼓励跨领域、跨行业的融合探索,推动资源要素的自由流动与高效配置,不仅能盘活存量资源、激发增量活力,更能催生具有引领性的新产业、新模式、新动能。
2026-01-28 02:45
合肥是儿童文学作家许诺晨的家乡。合肥科学岛,是她所拥有的一座得天独厚的科学和科幻题材的“硬核基地”,由她来写量子少年这个题材,可谓“近水楼台”。《量子女孩》(中国少年儿童新闻出版总社2025年12月出版)是她献给“量子新城”合肥的一部“家乡书”。
2026-01-28 02:55
北京火箭大街展示与运控中心作为商业航天测运控中心、商业航天公共服务平台的空间载体,将为企业提供卫星运控服务和交流推介平台。
2026-01-28 09:15
水稻耐不耐旱,和叶子的厚实程度相关,这是由什么因素决定的?日前,中国农业科学院作物科学研究所水稻分子设计技术与应用创新团队发现,水稻基因组中的三个耐旱基因可以“团队作战”,
2026-01-27 02:50
加载更多