点击右上角微信好友

朋友圈

请使用浏览器分享功能进行分享

正在阅读:银河中的魔力转圈圈②纤维状结构问题来“搅局”
首页> 科普频道> 天文前沿 > 正文

银河中的魔力转圈圈②纤维状结构问题来“搅局”

来源:光明网2020-07-03 16:21

调查问题加载中,请稍候。
若长时间无响应,请刷新本页面

  昨天我们说到赫歇尔(Herschel)空间望远镜于2009 发射升空,它经过近6个月的飞行,来到远在地月轨道之外的日地系统之第二个拉格朗日点(L2),开始在一个80万万公里大小的所谓“晕轨道”(Halo orbit)绕着L2点转圈,并且跟随L2绕太阳公转。这种轨道,即使在L2点看出去也不是自我重复的纤细的圈,更像是笼罩在L2点外的‘晕’。

  注意,赫歇尔不但身材超过哈勃并且拥有更大的自由。所谓晕轨道是环绕L2,而不再以地球为中心,因此赫歇尔天文台不是地球的卫星而是太阳系行星类“天体”。由于红外波段的极端制冷需求,需要重氦使探测器温度降到小于千分之一K,接近宇宙的死寂温度。重氦是全世界稀缺的耗材。飞出地球引力系统的赫歇尔自带液氦,在这快递不及的远方,只坚持了不到三年。

银河中的魔力转圈圈②纤维状结构问题来“搅局”

  这三年的科学观测对恒星形成领域产生了决定性的影响。在球状牛之外,赫歇尔揭示出恒星形成区普遍存在纤维状结构(filament)。而致密云核大多数出现在纤维状结构之中。纤维状结构普遍存在于宇宙中,分布之广远远超出各种牛状球。湍流、磁场、重力、激波、甚至随机运动都有可能催生纤维结构,因而对于恒星形成区的高密度纤维状结构的成因并没有共识。

  三大问题未解,又多出一个“纤维状结构问题”。就业机会是不缺的。云核的转动方向是不是和纤维的延展方向有关联呢?纤维状结构中的湍流与尺度有何关系?这些关乎磁场、湍流和引力博弈的结果,也直接影响到云核成因。

银河中的魔力转圈圈②纤维状结构问题来“搅局”  

金牛座分子云一氧化碳(CO)分布,及分子外流、分子气泡影响湍流的示意图 (取自 Li et al., 2015,ApJ)

  我们利用ALMA对猎户座分子云进行高角分辨率(约0.02光年)和高动态范围的的观测,获得了迄今为止最好灵敏度的大质量恒星形成区高密度气体天图 (Yue et al., 2020 RAA,见下图)。与先前大质量恒星形成区的绝大多数观测结果不同,我们发现猎户座致密气体由亚声速湍流主导,这挑战了必需要湍流的大质量恒星形成模型 (Tan & McKee,2004,ApJ)。

  此前对于猎户座分子云的单口径观测,例如野边山望远镜,通常获取超声速湍流。而我们的工作揭示了线宽在高分辨率下明显缩小。据此,我们首次提出了湍流在不同尺寸上的分解,将大尺度上的湍流分解成了三个可观测的量,即小尺度湍流,气体宏观运动和中间缺失尺度速度弥散。这种分解,尽管只是经验性的,但提供了一个可检验的预言,即大质量致密云核中的超音速湍流普遍是空间分辨率较差造成的表象。欢迎广大同行用更多的ALMA观测去检查这一假设。

银河中的魔力转圈圈②纤维状结构问题来“搅局”

  猎户座分子云致密气体探针N2H+ (J=1-0)的强度图(彩色)。背景为8微米红外辐射。强度基于ALMA和Nobeyama的组合数据。此图比以往最类似的观测,例如Hacar et al. (2018.ApJ), 要深3到5倍

  ALMA高分辨和高动态范围的气体成像能力,使得同时获取云核的角动量和延展纤维结构的方向成为可能。我们使用机器学习的办法系统辨识猎户座星云中的动态准三维(这里的三个维度是两个空间方向加红移速度)纤维结构,发现在不同纤维汇聚处形成的云核更容易塌缩,更有可能催生新的太阳(Zhang et al., 2020,MNRAS)。

银河中的魔力转圈圈②纤维状结构问题来“搅局”

  我们据此测出猎户座云核转动能只有其引力能的万分之四到百分之九。比较令人惊讶的是云核的转动方向完全独立于其所在纤维处的延展方向,不同于以往大多数此类研究的结果(Xu et al., 2020, ApJL)。这暗示了大质量恒星形成区云核角动量耗散的过程已经摆脱了磁场的影响,或者是演化过程具备更激烈的变化。

  拉普拉斯的星云假说可以唯像的解释为什么太阳系行星都在一个平面上绕转。星云假说不能解释为什么太阳的角度量99%在行星,而太阳的转动无足轻重。我们的研究验证了过去30年对于云核角动量的基本理解,即在太阳开始形成以前,星际介质角动量已经耗散至无足轻重,太阳的转动另有来源。我们的研究进一步揭示了一个新现象,即类似太阳系这样的转动平面在其形成时可能已经独立于孕育它的纤维状结构。

  这是理解星际气体聚合成星这一复杂过程的重要的一小步。

  作者相关近期论文发表于:

  美国《天体物理杂志快报》Xu et al. 2020, ApJL,DOI:10.3847/2041-8213/ab8ad7,作者:徐雪芳,李菂, 戴昱等

  美国《天体物理杂志》Xu et al. 2020, ApJ,arXiv:2006.04309,作者:徐雪芳,李菂, 戴昱等

  中国《天文与天体物理研究》 Yue et al. 2020, RAA,arXiv:2006.04168,作者:岳楠楠,李菂, 张其洲等

  英国《皇家天文学会月报》 Zhang et al. 2020, MNRAS accepted, arXiv:2006.13410, 作者:张超,任志远, 吴京文等

  参考文献:

  Alves, J.F., Lada, C.J., & Lada, E.A. Internal structure of a cold dark molecular cloud inferred from the extinction of background starlight. 2001, Nature, 409, 159

  Barnard E.E. On a nebulous groundwork in the constellation Taurus. ApJ, 1907, 25:218-225.

  Barnard E.E. On the dark markings of the sky, with a catalogue of 182 such objects. ApJ, 1919, 49:1-24.

  Hacar, A., Tafalla, M., Forbrich, J., et al. An ALMA study of the Orion Integral Filament. I. Evidence for narrow fibers in a massive cloud. 2018, ApJ, 610, A77

  Hollenbach, D., Salpeter, E.E. Surface Recombination of Hydrogen Molecules, 1971, ApJ, 163, 155

  Li, H.-X., Li, D., Qian L. et al. 2015, Outflows and Bubbles in Taurus: Star-formation Feedback Sufficient to Maintain Turbulence, ApJS, 219, 20

  Tan, J. C., & McKee, C. F. 2004, The Formation of the First Stars. I. Mass Infall Rates, Accretion Disk Structure, and Protostellar Evolution, ApJ, 603, 383

  Xu, X., Li, D., Dai, Y.S., et al. Independent Core Rotation in Massive Filaments in Orion. 2020, ApJL, 894, L20

  Xu, X., Li, D., Dai, Y.S., et al. Rotation of Two Micron All Sky Survey Clumps in Molecular Clouds. 2020, ApJ, arXiv:2006.04309

  Yue, N., Li, D., Zhang, Q., et al. Resolution-dependent Subsonic Non-thermal Line Dispersion Revealed by ALMA, 2020, accepted by RAA, arXiv:2006.04168

  Zuo P., Li D., Peek J.E. G., et al. Catching the Birth of a Dark Molecular Cloud for the First Time. ApJ, 2018, 867:13.

  作者简介:李菂,国家天文台研究员,从事天体物理和天文技术研究,撰写关于猎户座大质量“宁静”云核的系列论文,在美国天体物理杂志(ApJ)发表。

    插图:蔡琳、星宇

[ 责编:赵宇豪 ]
阅读剩余全文(

相关阅读

您此时的心情

光明云投
新闻表情排行 /
  • 开心
     
    0
  • 难过
     
    0
  • 点赞
     
    0
  • 飘过
     
    0

视觉焦点

  • 孔龙村遗址考古发掘阶段性成果展开幕

  • 探访米兰-科尔蒂纳冬奥会主媒体中心

独家策划

推荐阅读
“相对拥有百年历史的《科学》,《工程》才走过第一个十年。未来十年,我们要争取与世界顶级刊群比肩。”周济表示,这条路需要时间,以及学术评价观念、出版生态与国际化运营能力的协同推进。
2026-01-29 02:45
工业和信息化部28日公布,2025年,我国通信业实现平稳增长,产业结构持续优化,用户规模实现量质双升,5G、千兆等新型信息基础设施建设加快部署。
2026-01-29 02:55
中国科学院物理研究所近日发布《2025年度REBCO高温超导带材战略研究报告》(以下简称“报告”),这是国际上首份针对高温超导带材发展的系统性战略报告。
2026-01-29 02:55
2025年,山东省实现地区生产总值10.3万亿元,比上年增长5.5%。亮眼的成绩单,离不开创新动能持续发力。齐鲁大地上,科技创新和产业创新融合发展成果正在厚积薄发,新质生产力加速崛起,转型动能持续增强,高水平创新型省份建设的目标正在逐步实现,向着“十五五”征程稳步进发。
2026-01-29 02:45
近期,多家外国科技公司宣布计划将人工智能及数据中心送往太空,引发了科技界的热烈讨论。这一看似在科幻电影中才会发生的场景,已逐步从设想转变为现实。
2026-01-29 02:55
手机厂商将投入更多精力,通过形态变革、差异化外观设计、联名合作等,更好地满足用户的情绪价值需求,激发消费者购买欲望。
2026-01-29 09:02
截至2025年底,全国累计发电装机容量38.9亿千瓦,同比增长16.1%。2025年,风电光伏累计装机历史性超过火电,截至12月底已超出约3亿千瓦。
2026-01-29 09:01
1月27日上午,中国科学院大学星际航行学院揭牌仪式在中国科学院与“两弹一星”纪念馆举行,标志着该学院正式成立。从“东方红一号”划破天际到“祝融号”漫步火星,中国人的航天梦从未停止。
2026-01-28 02:45
2025年,我国区域科技创新布局更加优化,三大国际科技创新中心建设进入新阶段,区域科技创新中心建设取得新成效。
2026-01-28 02:45
打破产业间的壁垒,鼓励跨领域、跨行业的融合探索,推动资源要素的自由流动与高效配置,不仅能盘活存量资源、激发增量活力,更能催生具有引领性的新产业、新模式、新动能。
2026-01-28 02:45
合肥是儿童文学作家许诺晨的家乡。合肥科学岛,是她所拥有的一座得天独厚的科学和科幻题材的“硬核基地”,由她来写量子少年这个题材,可谓“近水楼台”。《量子女孩》(中国少年儿童新闻出版总社2025年12月出版)是她献给“量子新城”合肥的一部“家乡书”。
2026-01-28 02:55
北京火箭大街展示与运控中心作为商业航天测运控中心、商业航天公共服务平台的空间载体,将为企业提供卫星运控服务和交流推介平台。
2026-01-28 09:15
水稻耐不耐旱,和叶子的厚实程度相关,这是由什么因素决定的?日前,中国农业科学院作物科学研究所水稻分子设计技术与应用创新团队发现,水稻基因组中的三个耐旱基因可以“团队作战”,
2026-01-27 02:50
年轻人享受便利的同时,关注新的变化:智能穿戴设备是否正在塑造一个充满数据和规定的生活方式?“贴身伙伴”的出现改变了生活,人们同自己身体、同生活本身的关系,是不是也在变?
2026-01-27 03:15
商业航天是培育新质生产力、建设航天强国的重要力量。面对全球商业航天竞争日趋激烈的态势,中国商业航天亟须推动产业从“政策驱动”转向“市场驱动”。
2026-01-27 09:18
云南大学研究团队日前在国际学术期刊《自然》发表了关于早期脊椎动物视觉系统演化的研究成果,首次揭示了早期脊椎动物具有4只相机型眼,
2026-01-27 02:50
黄宣谕在《当代中国史研究》2025年第6期撰文指出,1949—1958年,基于工作重心转移与科普力量分布状况,党和政府重点在大中城市开展科普工作。
2026-01-28 02:55
印度东部西孟加拉邦近期出现尼帕病毒感染病例,目前已报告5例确诊病例,其中一名患者病情危重。泰国、尼泊尔等国已在机场和边境口岸加强防疫检测。尼帕病毒是一种新出现病毒吗?它有哪些特点?为何印度暴发的尼帕病毒疫情引起多国高度关注?
2026-01-27 03:15
科学家精神在我国科技发展事业中萌芽、生成、丰富、完善,成为兼具历史传承性、文化包容性与民族独特性的精神标识,不仅教育引导各类人才矢志爱国奋斗、锐意开拓创新,更是拔尖创新人才成长的精神旗帜与动力源泉。
2026-01-27 03:15
1月26日,将迎来腊八。一些细心的公众发现,相较于前些年,今年腊八来得有些晚。
2026-01-26 09:59
加载更多